函数y=sinx+cosx(0≤x≤π/2)的值域等于?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:28:51
函数y=sinx+cosx(0≤x≤π/2)的值域等于?
xV[SI+7}cHUx+Fz͜?5qD0!8ibRfN'sȮA vB8.Gv]d1\d OP 0`@U 5(Cm\o&vH# hZw݃CNQ QI9.n~?$\ ק#`0caN@ Sj#Czg#ل nj1-OJg$jlkWl$?d+[XAݡuZo`cs2?& x//ŝb/YK%V$ 'h!p r_f2'kTHg!@E#LҀf˝?Fdv6a>Z,T.K˞[D#,v 3E

函数y=sinx+cosx(0≤x≤π/2)的值域等于?
函数y=sinx+cosx(0≤x≤π/2)的值域等于?

函数y=sinx+cosx(0≤x≤π/2)的值域等于?
y=sinx+cosx (0≤x≤π/2)
注意:y是两个函数sinx和cosx的叠加,而这个两个函数在0≤x≤π/2区间的单调性不一致:
当x从0到π/2时,
sin(x)从0单调增加到1,而
cos(x)从1单调降到0.
由于,sin(x)和cos(x)在0≤x≤π/2区间的单调性不一致,
所以,你只有把两个函数化成一个来做
y=sinx+cosx(0≤x≤π/2)
=(根号2)*sin(x+π/4) (0≤x≤π/2)
由于,0≤x≤π/2
所以,π/4≤x+π/4≤(3/4)*π
但你要知道,若令z=x+π/4,当z从π/4变化到(3/4)*π,
此时,sin(z)并不“在整个区间里”单调变化,此时,
当z从π/4变到π/2,sin(z)从sin(π/4)单调增加到1
当z从π/2变到(3/4)*π,sin(z)从1单调减少到sin((3/4)*π)
所以,sin(z)在z=π/2,达到最大值为1,即
(根号2)*sin(x+π/4) 达到最大值为1*(根号2)=根号2
sin(z)在z=π/4和z=(3/4)*π,达到最小值为sin(π/4)=1/(根号2),即
(根号2)*sin(x+π/4) 达到最小值为 (根号2)*〔1/(根号2)〕=1
综上,(根号2)*sin(x+π/4) 当0≤x≤π/2时,
最大值 根号2,
最小值 1
值域y属于[1,根号2]
-----------------------------
其实,这道题,你把sin(x)和cos(x)在同一坐标系中(0≤x≤π/2)时的图像画出来,由于sin(x)和cos(x)在0≤x≤π/2上对称和单调,所以,可以很容易的想到
最小值出现在0≤x≤π/2的两个区间端点0或π/2上,而最大值出现在0≤x≤π/2的中点π/4上
所以,很快可以得
min Y = sin(0)+cos(0) = 1 + 0 = 1
max Y = sin(π/4)+cos(π/4) = 根号2
所以,值域Y属于[1,根号2]
-----------------
楼上两位,很明显有错,sin(x)和cos(x)在0≤x≤π/2时,都是非负的,
所以,sin(x)+cos(x)不可能小于0!

y=根号2(根号2/2sinx+根号2/2cosx)
=根号2sin(x+45°)
因为sin(x+45°)最大值=1,最小值=-1
所以y得最大值=根号2,最小值=-根号2
值域[-2,2]

y=根号2sin(x+45)
因为(0≤x≤π/2)
所以45≤x+45≤135
so -根号2≤y≤根号2
ps万能公式
y=asinx+bcosx
y=根号下(a方+b方)sin(x+*)
*=arctanb/a

0≤x≤π/2,则y>0
∴y=√(sinx+cosx)^2=√1+2sinxcosx=√1+sin2x
0≤x≤π/2,则0≤sin2x≤1
1≤y≤√2

求函数y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2] 求函数y=sinx(1+cosx) (0≤x≤2π)的单调区间 函数y=sinx+cosx(0≤x≤π/2)的值域等于? 求函数y=sinx+cosx+2sinxcosx(-π≤x≤0)的最值. 求函数y=sinx-cosx+sinxcosx,0≤sinx-cosx≤√2求值域. 函数y=sinx(cosx-sinx)(0 已知0≤x≤2π,求适合下列条件的角x的集合(题目内详)y=sinx和y=cosx都是增函数;y=sinx和y=cosx都是减函数;y=sinx是增函数,而y=cosx是减函数;y=sinx是减函数,而y=cosx是增函数.想知道思路或者过程... 已知0≤x≤2π,求适合下列条件的角x的集合(题目内详)y=sinx和y=cosx都是增函数; y=sinx和y=cosx都是减函数; y=sinx是增函数,而y=cosx是减函数; y=sinx是减函数,而y=cosx是增函数.想知道思路或者过程. 已知函数y=2sinxcosx+sinx-cosx(0≤x≤π).求y的最大值 当函数y=sinx+√3cosx(0≤x≤2π)取最大值时,x= 已知|x|≤π/4,求函数y=(cosx)^2+sinx的最大值和最小值. 当函数y=sinx-根号3cosx(0≤x 函数y=sinx(sinx+cosx) x属于(0,π/2) 求值域 已知函数y=(cos(x-(π/4))-0.5)/(1+sinx+cosx),0≤x≤π/2,设t=sinx+cosx函数y的最大值和最小值 求函数y=sinx+cosx+2sinx*cosx+2,x∈[0,π﹢2]的值域 若0≤x≤π,求函数y=sin2x+sinx-cosx的最大值和最小值 已知0≤x≤2x,求实和下列条件的角x的集合.急(1)y=sinx和y=cosx都是增函数(2)y=sinx和y=cosx都是减函数(3)y=sinx是增函数,而y=cosx是减函数(4)y=sinx是减函数.而y=cosx是增函数 求正弦函数y=sinx与余弦函数y=cosx(0≤x≤π)的交角为什么答案是arctan2√2