实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值高中参数方程过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 06:33:45
实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值高中参数方程过程
xTMO@+lg)nH f -@JE$>%άF͕ 9X3̌,Uuunb['0Zℷ\)d/G[$V7*o;w/ ~<?nzɟ[U^@#&h^Do f!03xBVsm |l5 z5A*e~Zc@4kZE=),5%V@Ѕr|A%S#()b]lgs.Mf"h5kt$LJ)N(vis80l"Lpン(wSbSp4$RYc#m6xfIS{j! `?6;-a)Xn HAT@C:4\>s!EyJbba?o9<';^^Jroܙuc0y0Vi [

实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值高中参数方程过程
实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值高中参数方程过程

实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值高中参数方程过程
3x^2+2y^2=6x
3x^2-6x+3+2y^2=3
3(x-1)^2+2y^2=3
(x-1)^2+(2/3)y^2=1
令x-1=sina y=√(3/2)cosa
x^2+y^2
=(1+sina)^2+(3/2)(cosa)^2
=(sina)^2+2sina+1+(cosa)^2+(1/2)[1-(sina)^2]
=-(sina)^2/2+2sina+5/2
=(-1/2)[(sina)^2-4sina-5]
=(-1/2)(sina-2)^2+9/2
当sina=-1时,x^2+y^2有最小值0
当sina=1时,x^2+y^2有最大值4

3x^2+2y^2=6x
--->3(x^2-2x)^2+2y^2=0
--->3(x-1)^2+2y^2=3
--->(x-1)^2+y^2/(3/2)=1......(*)
--->x=1+cost; y=√(3/2)sint
因此x^2+y^2=(1+cost)^2+3/2*(sint)^2
=[1+2cost+(cost)^2]+...

全部展开

3x^2+2y^2=6x
--->3(x^2-2x)^2+2y^2=0
--->3(x-1)^2+2y^2=3
--->(x-1)^2+y^2/(3/2)=1......(*)
--->x=1+cost; y=√(3/2)sint
因此x^2+y^2=(1+cost)^2+3/2*(sint)^2
=[1+2cost+(cost)^2]+3/2[1-(cost)^2]
=-1/2*(cost)^2+2cost+5/2
=-1/2*(cost-2)^2+9/2
-1=--->-3=--->1=<(cost-2)^2=<9
--->-9/2=<-1/2*(cost)^2=<-1/2
--->0=<-1/2*(cost-2)^2+9/2=<4
--->0=所以x^2+y^2的值的范围是[0,4]。

收起