lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:03:27
x)UxQ${:uzsf*
~O/Ԟ^ԳM59&HF
z6c@BWQ< ƁVViGӵO'<Ov/e6~Dk@%0.OF8u
G["
E!&q!?)AX6yv$ V
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]求极限
lim (x→0)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]=0
是不是x-->∞
[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
={[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]}/1
分子分母同时乘以[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=[(x²+x+1)-(x²-x+1)/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2x/[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
∴ lim (x→∞)[√﹙x²﹢x+1﹚]-[√﹙x²-x+1﹚]
=lim (x→∞)2x/[√﹙x²﹢x+1﹚]+[√﹙x²-x+1﹚]
=2 /2
=1