已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z麻烦啦xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z= xy(z + 1) + y(z + 1) + x(z + 1) + z= (z + 1)(xy + y + x + 1)+1= (z + 1)(x + 1)(y + 1)+1= 1975因此 4*2*247=1976回答

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:56:52
已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z麻烦啦xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z= xy(z + 1) + y(z + 1) + x(z + 1) + z= (z + 1)(xy + y + x + 1)+1= (z + 1)(x + 1)(y + 1)+1= 1975因此 4*2*247=1976回答
xSn@YGN 'l؀"rPbG5K4UHRUڪ{*>/pljB!X`3>1gt=6*e2:#Ӳia8mv y$>l,|vtT_^DMRiFw $83)A۔i ˴2BdoPR`]Ƙ,fkQ#]M/ș7=)B4S˿ż^A~ʼ*Ǜ)>)v^$ͧ:!k(i\8aBłF Z]GmRdw`]Lď/҈|;HU?3v[AۢB !i*e?v֯|lJ(B1 aa_#]†۬<|V/H( 'kXTπx- $UY dcRZ2`3^raޘ7eѯ/

已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z麻烦啦xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z= xy(z + 1) + y(z + 1) + x(z + 1) + z= (z + 1)(xy + y + x + 1)+1= (z + 1)(x + 1)(y + 1)+1= 1975因此 4*2*247=1976回答
已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z
麻烦啦
xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z
= xy(z + 1) + y(z + 1) + x(z + 1) + z
= (z + 1)(xy + y + x + 1)+1
= (z + 1)(x + 1)(y + 1)+1
= 1975
因此 4*2*247=1976
回答者:chsm4113 - 部门总裁 十二级 2009-11-6 23:28 的朋友,你的答案中貌似缺少了+1的这个哦,可能漏掉了吧,

已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z麻烦啦xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z= xy(z + 1) + y(z + 1) + x(z + 1) + z= (z + 1)(xy + y + x + 1)+1= (z + 1)(x + 1)(y + 1)+1= 1975因此 4*2*247=1976回答
xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z
= xy(z + 1) + y(z + 1) + x(z + 1) + z
= (z + 1)(xy + y + x + 1)
= (z + 1)(x + 1)(y + 1)
= 1975 = 5*5*79
所以,是4,4,78

是正整数解吗?应该说明。
不然有无数组解,怎么写啊?

xyz+xy+yz+zx+x+y+z=1975 可化为
(x+1)*(y+1)*(z+1)=1975
求1975的因数即可