已知xyz=1,x+y+z=2,x^2+y^2+z^2=16,求代数式1/(xy+2z)+1/(yz+2x)+1/(zx+2y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 09:07:40
已知xyz=1,x+y+z=2,x^2+y^2+z^2=16,求代数式1/(xy+2z)+1/(yz+2x)+1/(zx+2y)
x10 E QMU1ԽU$9L;0qh j C;IVP RyTw 8IWbeЖyrMΠ<"9-0I.N0Qlb`5=SlnX|)ɤ]~`k$9fBCmo ,<_DN&-j|a

已知xyz=1,x+y+z=2,x^2+y^2+z^2=16,求代数式1/(xy+2z)+1/(yz+2x)+1/(zx+2y)
已知xyz=1,x+y+z=2,x^2+y^2+z^2=16,求代数式1/(xy+2z)+1/(yz+2x)+1/(zx+2y)

已知xyz=1,x+y+z=2,x^2+y^2+z^2=16,求代数式1/(xy+2z)+1/(yz+2x)+1/(zx+2y)
xy+2z=xy+4-2x-2y=(x-2)(y-2).
yz+2x=(y-2)(z-2),zx+2y=(z-2)(x-2).
4=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=16+2(xy+yz+zx),
xy+yz+zx=-6.
(x-2)(y-2)(z-2)=xyz-2(xy+yz+zx)+4(x+y+z)-8=13.
原式=[(x-2)+(y-2)+(z-2)]/(x-2)(y-2)(z-2)
=-4/13.