已知直线l经过抛物线x2=-4y的焦点,且被圆(x+3)2+(y-5)2=25截得得弦长为8,则直线l的方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 23:40:17
已知直线l经过抛物线x2=-4y的焦点,且被圆(x+3)2+(y-5)2=25截得得弦长为8,则直线l的方程为
xQN@)hb MC)B B(  T3r_ k2;y;JLVo~ NئσmwMRF3r;nfr](e%U*QsN_WvCD۝Ƞ5u)V?Mj7Gm5^R vk'`Q7NeWwlIȡ?t)B#VlרtPyrgmkaK7ĞEy K2bw`B:ۄjE ^I}XFE=d%NB1 h+y7 s

已知直线l经过抛物线x2=-4y的焦点,且被圆(x+3)2+(y-5)2=25截得得弦长为8,则直线l的方程为
已知直线l经过抛物线x2=-4y的焦点,且被圆(x+3)2+(y-5)2=25截得得弦长为8,则直线l的方程为

已知直线l经过抛物线x2=-4y的焦点,且被圆(x+3)2+(y-5)2=25截得得弦长为8,则直线l的方程为
圆的半径等于5,截得弦长的一半等于4,所以圆心到直线距离等于3;且直线过(0,-1)
(1)若直线为x=0(讨论斜率不存在的情况),恰好点到直线距离为3,所以为一个答案;
(2)设直线方程为:y=kx-1,由点到直线距离公式得k= -3/4
所以直线方程为:
x=0,或者y= -3/4x-1