方程1/(x²+1)+(x²+1)/x²=10/3x的实数根求上述方程的实数根,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:35:24
方程1/(x²+1)+(x²+1)/x²=10/3x的实数根求上述方程的实数根,
x){6m݆jʆچHl}(@߸=ق66=b R:6IE эx;Z:(35+4+p Vdu:h*+ _6-~RGVJz]0PXOM5~1 AmmP3M556IWMi0}1TSh B⪳|c<0l_\gR\

方程1/(x²+1)+(x²+1)/x²=10/3x的实数根求上述方程的实数根,
方程1/(x²+1)+(x²+1)/x²=10/3x的实数根
求上述方程的实数根,

方程1/(x²+1)+(x²+1)/x²=10/3x的实数根求上述方程的实数根,
1/(x²+1)+(x²+1)/x²=10/(3x)
x/(x²+1)+(x²+1)/x=10/3
令x/(x²+1)=y,(x²+1)/x=1/y
那么y+1/y=10/3
y²-10/3y+1=0
解得y=3或y=1/3
由x/(x²+1)=3
==> 3x²-x+3=0
Δ=1-36x²-3x+1=0
==> x=(3-√5)/2或x=(3+√5)/2
所以方程为实数根为
x=(3-√5)/2或x=(3+√5)/2