若关于x的方程x^2-x+a=0和 x^2-x+b=0(a不等于b)的4个实数根可以组成首项为1/4的等差数列,求|a-b|的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:46:56
若关于x的方程x^2-x+a=0和 x^2-x+b=0(a不等于b)的4个实数根可以组成首项为1/4的等差数列,求|a-b|的值
xQJ@~=&&vE2y!g zC"* D&-MBՓGi1r~a5)T{1izN\!R캺xn sT.bXΖwmQsPbfH3Kzbd7{a,4r+ }ȏ_37q,ޠ=Dw`6teNA+n-[ hR1wiYx4&ZEܮ.8 ٰ$JMHLYط "g4ގ~gP

若关于x的方程x^2-x+a=0和 x^2-x+b=0(a不等于b)的4个实数根可以组成首项为1/4的等差数列,求|a-b|的值
若关于x的方程x^2-x+a=0和 x^2-x+b=0(a不等于b)的4个实数根可以组成首项为1/4的等差数列,求|a-b|的值

若关于x的方程x^2-x+a=0和 x^2-x+b=0(a不等于b)的4个实数根可以组成首项为1/4的等差数列,求|a-b|的值
x^2-x+a=0 实数根x1,x2 x^2-x+b=0 实数根x3,x4 4个实数根组成首项为1/4的等差数列:1/4, 1/4+d, 1/4+2d, 1/4+3d x1+x2=x3+x4=1 x1=1/4 ,x2=1/4+3d ,x3=1/4+d ,x4=1/4+2d 1/4+1/4+3d=1 3d=1/2 d=1/6 x1x2=(1/4)*(1/4+1/2)=3/16=-a x3x4=(1/4+1/6)(1/4+1/3)=(5/12)(7/12)=35/144=-b |a-b|=|x3x4-x1x2|=|35/144-3/16|=8/144=1/18