若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]上单调增加.上述函数单调性判别法的逆命题成立吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:45:39
xQN@|!YmR`K
`Th1!4C$Mȡ^fm-v133IOpiحup~GyuZ8/}(H4NU+ A#X7#f$yeiapyR:<D{
yftt5#mL3s%Y2WE_8Fbj=^.)9Skd`~Jfo@])C,ApG8]d$?ԦȐκwc+\+K8Z
若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]上单调增加.上述函数单调性判别法的逆命题成立吗?
若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]上单调增加.
上述函数单调性判别法的逆命题成立吗?
若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]上单调增加.上述函数单调性判别法的逆命题成立吗?
逆命题不成立的
举个例子f(x)=x^3,
这个函数在任意区间都是单调递增函数,
举个区间[-1,1]
但是你会发现这个函数在x=0这点的导数是等于0的
证明:函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x)在闭区间[a,b]上连续,a
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
关于连续函数的一个简单问题有个定理是“若函数f在闭区间[a,b]上连续,则f在[a,b]上一致连续”...现在有个疑问,对于定义在[0.1,0.5]区间上的函数f(x)=1/x,f显然在定义区间上连续.按定理那么f就
函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B)
若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数.
函数零点定义问题若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一...
若函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,使得f(x)+X*f'(x)=0
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f(x)恒=0
设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=0
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至
用区间套定理证明连虚函数有界性定理:若f(x)在[a,b]上连续,则f(x)在[a,b]上有界