1、an前n项和为sn,sn=2n^2+1,求an2、数列{an}满足sn=1+1/4*an,求an 3、数列{an}满足an=3(n=1)且an=a1+a2+…+an-1(n>=2),求通项4、对任意x属于R,f(x)+f(1-x)=1/2,则f(0)+f(1/n)+f(2/n)+...+f[(n-1)/n]+f(1)=_____5、一个首项为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:39:37
xWNG~\{wmT(6Bz-ĭ䪩d v1I ~4@41$BvnJJoڮsoXJeYyg<ۺeg)X8]易٩
KI&yVocZkgLKF;Fe7Z>O|ebLkY9V6xi^K Rң!Hƒ5Z97B(Wݝ'P'oJ^yy!|A@簺|[G{k7B)X)C zxiHnUt8l%oiMftoe)!F&D,^i1f1ZWz_Jɱz'cf_'-|VݶźQ[qVy[hͦQ,ÌgL$-XAt'~]
g1$ID{OR4Z3Q92 Ւf9>i>V7eln0ft&ClzŊy>,Ũ+=UBͷ2vUSֵ84;$PhNŷH'
VcisI
qmWqs+Dq)ըzұx:bbY[Rt{Tq0ER=\Q!Z{lTt3Y¸QlW6
"*^! tv)&^{BӃ$@/d5 V텙zP*3*!I1 Lb XG{rI%d=_˃mTnϯw^<fn&:;4m\8yrZne
y
6 i bJC8k12fʳ9*8lFwL
$֊ oh35R\ cDƥҫ;ƉH/
%|ٽ.VPPZS@<[Rڦ߬c:7p㚥{@E*| D1$^\1s$^ /boF`5t6ZF&٤[ez¼a};C`0:9pJyhF 69UuT&d}lb$u
SCQ'QIч"ֲ$t=
Uf*E;]hD
a|l~Hm erE4IAkOF}`NZ&ӢlHXOsJa~y=m^~(49o*@ۜ.6N0,;#8-)G\#BjZ>穾Y2Ĵ6M}4=xa3b6'n _t7$8()B䌓A7̦$0rZ2|)|_eErz7nQB
A,^ 5~c
b-=gCi"naLgC
랂
02'=4>Ce$Om[ݵg`*geyrV~ Vhh:*xj^=L~F4$& */G;5,]D<,N۳~kdԗ
数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an
数列{an},an=1/[n*2^(n-1)].前N项和为Sn,求证Sn
Sn为等比数列{an}前n项和,an=(2n-1)*3的n次方,求Sn
数列{an}前n项和为Sn,且an+Sn=-2n-1 证明{an+2}是等比数列
Sn=2an+n a1=1 求an其中{an}的前N项和为Sn
Sn为数列{an}前n项和,(2n-1)Sn+1-(2n+1)Sn=-4n-3 ,求{an}通项公式
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
数列{an}前n项和为Sn,对一切正整数n都有Sn=n+(1/2)an,求an,Sn
an=(2^n-1)/2^(n-1)前n项和为Sn,求Sn
数列an ,a1=1,前n项和为Sn ,正整数n对应的n an Sn 成等差数列.1.证明{Sn+n+2}成等比数列,2.求{n+2/n(n+1)(1+an)}前n项和
已知:sn为数列{an}的前n项和,sn=n^2+1,求通项公式an.
已知等差数列{an}的前n项和为Sn,如果Sn=(an+1/2)^2(n∈N+0,bn=(-1)^n*Sn已知等差数列{an}的前n项和Sn,如果Sn=(an+1/2)^2(n∈N+0,bn=(-1)^n*Sn,试求{bn}的前n项和Tn
An=2An-1+2^n+2,n》2,A1=2,Sn为数列{An}的前N项和,证明Sn>n^3+n^2
已知an=n/(n+1),bn=an+1/an,bn的前n项和为Sn求证:2n<Sn<2n+1