菱形ABCD的边长为2,BD=2,E、F分别是边AD、CF上的两个动点,且满足AE+CF=2 1.证△BDE≌△BCF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:00:18
xPKN0
{fUɞ/P!t$BPW(!n*W`\8 l7s> XH|&Lo5\N'4H"HO͌OZvQ"Q]WVּ?v0ȅ3kb dP^ɃZoss$;P.tޮ]
lM5|s 38vS
9hFTQP~% ,n^+b+֣}'*1
关于菱形ABCD的边长为2,BD=2,E,F分别是边AD,CD上的两个动点,且满足AE+CF=2
菱形ABCD边长为2 BD=2E、F是AD,CD上的两个点AE+CF=2求△BDE全等于△BCF
已知四边形ABCD是菱形,AC,BD为对角线,E为AD的中点,EF//BD交CB的延长线与点F,交AB与M(1)请说明M是EF的中点(2)请说明EF垂直AC(3)若菱形ABCD的边长3为a,∠EFC=45°,请求出菱形ABCD的面积(过程)
已知四边形ABCD是菱形,AC、BD为对角线,E为AD的中点,EF‖BD交CB的延长线于F,交AB于M1、证明M是EF的中点2、证明EF⊥AC3、若菱形ABCD的边长为a,角EFC=45°,请求出菱形ABCD的面积
正方形ABCD的边长为2,以对角线BD为边长作菱形BEFD,点C,E,F在同一直线上.求角EBF正方形ABCD的边长为2,以对角线BD为边长作菱形BEFD,点C,E,F在同一直线上.(1)求角EBC的度数(2)求CE的长
正方形ABCD的边长为2,以对角线BD为边作菱形BEFD,点C,E,F在同一直线上,求 ∠EBC的度数.
E是边长为2的菱形ABCD的边CD的中点,F是BC中点,在BD上找一点P,求PE+PF的最小值
如图所示正方形ABCD的边长为2,以对角线BD作为边作菱形BEFD,点C、E、F在同一直线上
菱形ABCD中,∠ABC=60°,E,F是BD上的点,AB=2,那么BE=DF=____时,四边形ABCD是正方形,且边长为_____.
已知菱形ABCD的边长为1,∠ADC=60°,等边三角形AEF两边分别交CD,CB于点E,F1,特殊发现,如图1,若点E,F分别是边CD,CB的中点,求证菱形ABCD对角线AC,BD交点O为等边三角形AEF的外心2若点E,F始终在边CD,CB上移
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若
25.已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F. (1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2
如右图,在边长为2的菱形ABCD中角BAD=60,E为CD的中点,向量AE*BD=?
如图,在边长为2的菱形ABCD中,角BAD=60,E为CD的中点,则向量AE·BD=?
如图,在边长为2的菱形ABCD中,角BAD=60,E为CD的中点,则向量AE*BD
如图菱形ABCD的边长为2,对角线BD=2,E,F分别是AD,CD上的两个动点,且满足AE+CF=2判断△BEF的形状,并说明理由.今天就要,
如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD、CD上的两个动点,且满足AE+CF=2,判断三角形BEF的形状
菱形ABCD的边长为2,BD=2,E、F分别是AD、CD上的两个动点,且满足AE+CF=21、求证△BDE≌△BCF2、判断△BEF的形状,并说明理由.