近世代数一题求解设A={1,2,3,4,5},在2^A中定义二元关系~:T[S]=[T],证明~是等价关系,并写出等价类和商集2^A/~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:39:00
xRN"A!a'&Yϐ.vN !D2#@VW.t|dYT߮sϹuUPOu%r)^l%fA:VXzFj^Ze 5,_ޭ:7X5WWnWqiP_KX6WLL\ OwkvQDaE wSVPiOPiԌG9n֘&.Da*y4/ɉ(Z߻` uIMQ;0%TDCwqD nVC] ԯ Ph  ɗS`Z*0eJ`%ܰr*x޵V[.nSX/p'.LYAA8.cDK$otDEޥ!kblub uݠpvQD'/E
近世代数一题求解设A={1,2,3,4,5},在2^A中定义二元关系~:T[S]=[T],证明~是等价关系,并写出等价类和商集2^A/~ 近世代数设a,b是群G的两个元,则(a b)^-2= 近世代数 1设G=(a)是循环群,试证明G的任意子集也是循环群. 1.设A={1,2,3,4},在2^A中规定二元关系~:T⇔S,T含有元素个数相同,证明这是一个等价关系.这里的2^A表示A的幂集合,即由A的全部子集为元素构成的集合.近世代数题目 这是几道数学题、是近世代数的,一、填空题1、设集合A有一个分类,其中a与b是A的两个分类,如果a≠b,那么a和b交集为( ).2、设群G中元素a的阶为m,如果a的n次方等于e,那么m与n存在整除关系为 近世代数:设G为群,a,x∈G,证明:|a^-1|=|a|;|(x^-1)*a*x|=|a| 设φ:A →B,S⊆A,证明φ‾ 1(φ(S))⊇S,举例说明“=”不一定成立.近世代数 想请教个近世代数的问题1.关于近世代数置换的乘法:a=(1对2,2对3,3对1),b=(1对2,2对1,3对3 );a乘b=(1对2,2对3,3对1)乘(1对2,2对1,3对3 ).但另外一题:a=(1对2,2对3,3对1),b=(1对3,2对1,3对2);a乘b=(1对3,2对1,3对2) 近世代数证明题 证明:Q[i]={a+bi|a,b∈Q} 为域 近世代数 不理解 例3:A={1},B={2},D={奇,偶}0:(1.2)→奇=12 是一个A×B到D的代数运算例4 A={1.2},B={1.2},D={奇,偶}0:(1.1)→奇 (2.2)→奇(1.2)→奇(2.1)→偶是一个A×B到D的代数运算这两个题, 近世代数的一道题 近世代数问题第二题? 求解一道近世代数证明题证明:S3是唯一的非交换6阶群. 近世代数题证明Q(根号2 )={a+b根号2| a,b是有理数}对普通实数的加法和乘法作成一个域 近世代数1,设G是群,若任意a,b有 (ab)2=a2b2,则G是 Abel 群.2,找出Z和Z12中全部子群3,举例:含幺半群其子半群无幺元或有与其不同的幺元. 设G是一个群,证明:(1)G的单位元的唯一的; (2)任意a属于G,则a在G中的逆元是唯一的.近世代数 近世代数4,A={1,2,3,4,5},在A的幂集2A上定义关系R:(S,T)∈R当且仅当|S|=|T|.证明该该关系是等价关系,且给出它的等价类和商集.5,A={1,2},B={a,b,c}求:A×B,B×A,A×A,B×B6,在下述代数系统(A,*)中是否 第一题和第二题,近世代数