解答题;已知椭圆的短轴顶点与双曲线4分之y平方-12分之x平方=1的焦点重合,它们的离心率之和为5分之13,椭圆的焦点在x轴上,求椭圆的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 19:17:45
xRN@7LKi5Ĥ@yh10BLDbNt:tscHm쓯§)iFGtI+^0v؟
f=Ze⽇7^@M D L5:䲩jptUv\"/0n6'R2@0?W÷JF
t*21
d/{҉0LPK)HgJR501ZJ;lcy@^pg?qxe(:ᠮ5o ylO[L>t,4Pr#'?V
解答题;已知椭圆的短轴顶点与双曲线4分之y平方-12分之x平方=1的焦点重合,它们的离心率之和为5分之13,椭圆的焦点在x轴上,求椭圆的方程
解答题,解答写出推理.演算步骤 ,求高人解答已知椭圆方程为X^2/2+Y^2=1,双曲线X^2/a^2-y^2/b^2=1的顶点与椭圆的焦点重合,双曲线的左右焦点F1,F2与椭圆的顶点重合,P点为双曲线上任何一点,证明:|PF1
已知椭圆的顶点与双曲线4分之y平方-12分之x平方=1的焦点重合,它们的离心率之和为5分之13,若椭圆的焦...已知椭圆的顶点与双曲线4分之y平方-12分之x平方=1的焦点重合,它们的离心率之和为5分
已知椭圆E:与双曲线G:,若椭圆E的顶点恰为双曲线G的焦点,椭圆E的焦点恰为双曲线G的顶点.(Ⅰ)求椭圆已知椭圆E:与双曲线G:,若椭圆E的顶点恰为双曲线G的焦点,椭圆E的焦点恰为双曲线G
已知椭圆的顶点与双曲线[(yy)/4-(xx)/12=1] 的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x 轴...已知椭圆的顶点与双曲线[(yy)/4-(xx)/12=1] 的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在
急求数学题、已知椭圆的顶点与双曲线y^2/4-x^2/12=1的焦点重合已知椭圆的顶点与双曲线y^2/4-x^2/12=1的焦点重合,它们的离心之和为13/5,若椭圆的焦点在x轴上,求椭圆的方程
已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,以椭圆的长轴为实轴,短轴为虚轴的双曲线的焦距为2√34(1)求椭圆及双曲线的方程(2)设椭圆的左右顶点分别为A、B,在第二象限内取双曲
一道关于椭圆的题.已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线与Y平方=4X的焦点重合.且椭圆经过点P(1,3/2),①,求椭圆的方程.②,求以这个椭圆的焦点为顶点,顶点为焦点的双曲线的
已知椭圆方程x2/4+y2/3==1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率是
已知椭圆的顶点与双曲线y²/4-x²/12=1的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x轴上,求椭圆的方程
已知椭圆的顶点与双曲线y2/4-x2/12=1的焦点重合,他们的离心率之和为13/5,若椭圆的焦点在x轴上,求椭圆方程.
已知椭圆的顶点与双曲线y2/4-x2/12=1的焦点重合,他们的离心率之和为13/5,椭圆方程
已知椭圆的顶点与双曲线y2/4-x2/12=1的焦点重合,他们的离心率之和为13/5,若椭圆
已知椭圆C与双曲线x^2/4-y^2/5=1有两个公共顶点,且椭圆的一个焦点到双曲线的渐近线的距离为2/3,求椭圆C的标准方程
已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两条渐进性与椭圆的交点构成的
已知椭圆的焦点在X轴上,且一个焦点与短轴的两个顶点构成直角三角形,椭圆的焦距额为4,求:椭圆的标准方
已知椭圆的中心再远点,对称轴为坐标轴,椭圆短轴的一个顶点B与两个焦点F1,F2组成三角形的周长是4+2根号3求此椭圆的标准方程
已知椭圆的顶点与双曲线y^2/4-x^2/12=1的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x轴上,求...已知椭圆的顶点与双曲线y^2/4-x^2/12=1的焦点重合,它们的离心率之和为13/5,若椭圆的焦点在x轴