函数z=f(x,y)在某点存在偏导数Fx与Fy是它在该点存在微分的什么条件啊?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 11:50:47
x){ھ Ui:Ox6O6?](VdG[럮kJXhߺmgM/hw@=@ƓKcD7nW=nht{C§3Yt+\5` %|/5>( #=<;PL8x
函数z=f(x,y)在某点存在偏导数Fx与Fy是它在该点存在微分的什么条件啊? 为什么说“若函数z=f(x,y)在点P(x,y)沿任意方向的方向导数都存在,也不能保证z=f(x,y)在这点存在偏导数. 二元函数z=f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点连续的什么条件? 函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微 隐函数存在定理的问题隐函数存在定理的条件是:1.方程F(X,Y,Z)在某点为0,2.F(X,Y,Z)对X和对Y的偏导数连续,3.F(X,Y,Z)对Z的偏导数不等于0;而这道题只要求“F(X,Y,Z)对Z的偏导数不等于0”,那另外两个 函数可微分的充分条件函数z=f(x,y)在点(x0,y0)可微分的充分条件是f(x,y)在点(x0,y0)处[ ]A.两个偏导数连续B.两个偏导数存在C.存在任何方向的方向导数D.函数连续且存在偏导数 高等数学下册多元函数微分学及其应用中隐函数存在定理1怎样证明?求导公式:dy/dx=-Fx/Fy,隐函数存在定理1:设函数F(x,y)在点P(x.,y.)的某一邻域内具有连续偏导数,且FX(x.,y.)=0,FY(x.,y.)不等 描述二元函数Z=f(x,y)在 (0,0)点邻域内有定义,连续,偏导数存在,可微四个条件间关系 函数Z=f(x,y)的两个偏导数在点(x,y)连续是f(x,y)在该点可微分的什么条件啊? 详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微 函数z=f(x,y)在点(x0,y0)处具有两个偏导数fx(x0,y0)、fy(x0,y0)是函数在该点存在全微分的( ) A.充分条件B.充要条件C.必要条件D.既不是充分条件,又不是必要条件 已知方程 F[x(y,z),y(x,z),z(x,y)]=0, 且函数偏导数存在 ,证明 dz/dx*dx/dy*dy/dz=-1 偏导数的存在性问题函数z=|x|+|y|为什么在(0,0)点连续,但偏导数去不存在?3Q~ 函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的什么条件函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:A必要而非充分条件 B充分而非必要条件C充分必要条件 D既非充分 若z=f(x,y)存在一阶连续偏导数,那么推不出来它存在二阶偏导数,我想问z=f(x,y)的二阶偏导数存在的条件我想问z=f(x,y)的二阶偏导数存在的条件是什么?还有,为什么书上说若z=f(x,y)在m(x0,y0)处存在 设方程F(x+y-z,x^2+y^2+z^2)=0确定了函数z=z(x,y),其中F存在偏导数,求z对x的偏导,z对y的偏导. 对于z=f(x,y),偏导数Zx=fx吗?怎么区别呀? 偏导数题目证明!如果f(x,y)存在一阶偏导数,并且在开矩形区域R=(a,b)X(c,d)上连续.如果A(x1,y1)B(x2,y2)也在R内,求证 存在点P(x*,y*)在AB上,使得f(x2,y2)-f(x1,y1)=fx(x*,y*)(x2-x1)+fy(x*,y*)(y2-y1)