函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:34:37
xSmOP+D--XZ6˔Oț5 MyсS)Ozn'n)OKs^WxE-̭P):Mlp'IؘEX0J)ztnm)%)w&" &%GvU)
rrGDX C=ڗFuT. TkejTBDEEQV6nm?)< q5[Bi7nL\$ yǿSd Q@@h-!y.{OzCT4q!C`hzֲi*\ZqmX9NXZ`NkNZ}73V8s3a6r^|TZ5.)dhZ`q{hm;1 K-6H.>Ի2@\1
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()
A.连续 B.不连续 C.可微 D.不一定可微
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
答案为D,不一定可微.对于多元函数,当函数的个偏导数都存在时,虽然能形式的写出dz,但它与△z之差并不一定是较ρ较小的无穷小,因此它不一定是函数的全微分(根据全微分的定义,同济六版第70页),反例在71页.各偏导数存在只是全微分存在的必要条件而不是充分条件.定理2,也是充分条件,如果偏导数在点(x,y)连续,则函数在该点可微.
我建议您好好看一下课本,了解这些定理和定义是怎么来的,很多问题不攻自破,更不用去死记硬背
D
如果fx(x0,y0)=fy(x0,y0),则可微
D
解答如图。
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
二元函数z=f(x,y)在点(x0,y0)处的连续是函数在点(x0,y0)处可微分的什么条件
可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
设z=f(x,y)在点(x0,y0)处自变量有增量Δx,Δy,函数全增量为Δz,若函数在该点可微,则在点(x0,y0)处:A Δt=-dzB Δz=fx(x0,y0)+fy(x0,y0)CΔz=fx(x0,y0)dx+fy(x0,y0)dyDΔz=dz+op(p=根号下Δx^2+Δy^2)
二元函数z=f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点连续的什么条件?
设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是A、fx(x0,y0)=fy(x0,y0)=0;B、曲面z=f(x,y)在(x0,y0,z0)处具有水平的切平面;C、fxy(x0,y0)=0;D、dz|(x0,y0)=0;但是我找不出来哪个是错的?
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反之呢?如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反
设二元函数f(x,y)在点(x0,y0)处满足fx(x0,y0)=0,且fy(x0,y0)=0,则有?f(x,y)在点(x0,y0)处一定取得最大值吗?还是最小值?f(x,y)在点(x0,y0)处一定取得极值?还是不一定取得极值?
对于点(x0,y0,z0),t趋近于0;有函数f()满足f(x0+t,y,z)=f(x0,y0,z0)*P(y-y0,z-z0);其中p()为与y-y0,z-z0有关一个二维正态分布函数,已知f(x0,y0,z0)的初值 我想求在x=x1点任意f(x1,y,z)的值,只要思
设函数y=f(x)在x=x0点处可导,则曲线y=f(x)在(x0,y0)处切线方程为____A.y-y0=f(x0)(x-x0) B.y-y0=f(x)(x-x0) C.y-y0=f'(x0)(x-x0) D.y-y0=f'(x)(x-x0)
对于二元函数f'x(x0,y0)=0,f'y(x0,y0)=0则在点M(x0,y0)处f(x,y)A必连续B必须取极值C可能取极值
为什么说函数f(x,y)在点(x0,y0)可微分,就能推出f(x,y)在点(x0,y0)处连续呢?
二元函数f(x,y)在点(x0,y0)处两个偏导数 x(x0,y0),y(x0,y0)存在是f(x,y)在该点连续的?什么条件
二元函数f(x,y)在点(x0,y0)处两个偏导数 x(x0,y0),y(x0,y0)存在是f(x,y)在该点连续的?什么条件
详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微
数学问题求判断,说明理由1、若二元函数z=f(x,y)在点(x0,y0)处可微,则z=f(x,y)在点(x0,y0)处得两个偏导数都存在.2、y=ex次方+c1x2+c2x+c3(其中c1,c2,c3为任意常数)是微分方程y'''=ex次方的通解.
函数z=f(x)有fx(x0,y0),fy(x0,y0)存在,则有f(x0,y0)存在.为什么
若y = f(x)在x0处有f'(x0)存在,那么在曲线y = f(x)上点(x0,y0)处的切线方程为y-y0=f'(x0)(x-x0)判断题