F1,F2是椭圆的两个焦点,若椭圆上存在点P,使角F1PF2=120°,则离心率求详解斜率怎么算得

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 02:36:48
xRMoA+{,Xv7^I$H8Tb{ÖR\jF[@$ic)* ҅.3١(W/~=;3tЂa.,Ծ Y+Pkav=HS k$kq =^xzpTYCw0)GT;j:+7=0pSiDOv!$R◓/Mi*7VDc@)N8y% 8\k MɎ?zDխtb36'7֙UV3dEbMN?r҉Q&nU @殡'f59MTq :*0y·%aI|6կ,o"pƲ6Cs 1ۉ(cЫ]~t{(6^p8%ow2)=&ƎP q'%
设F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得角F1PF2=120度,求椭圆离心率的范围 已知F1,F2是椭圆的两个焦点,若椭圆上存在点p,使得pF1⊥pF2,则椭圆离心率范围 F1,F2是椭圆的两个焦点,若椭圆上存在点P,使角F1PF2=120°,则离心率求详解斜率怎么算得 已知F1,F2是椭圆的两个焦点,椭圆上存在M使得角F1MF2=90°,则椭圆离心率的取值范围是 椭圆的左右焦点为F1,F2,若椭圆上存在一点a/sinPF1F2=c/sinPF2F1,则椭圆离心率的范围是? 椭圆的左右焦点为F1,F2,若椭圆上存在一点a/sinPF1F2=c/sinPF2F1,则椭圆离心率的范围是? 已知P(3,4)是椭圆上的一点,F1.F2是椭圆的两个焦点.若PF1垂直于PF2,求椭圆的方程 设F1,F2是椭圆的两个焦点,若椭圆上存在点P,使角F1PF2等于120度,则椭圆的离心率e的取值范围是多少? 已知F1,F2是椭圆的两个焦点,P是椭圆上一点,若∠PF1F2=15,∠PF2F1=75,则椭圆的离心率为? 焦点在x轴上的椭圆上有一点P(3,4),F1、F2是椭圆的两个焦点?焦点在x轴上的椭圆上有一点P(3,4),F1、F2是椭圆的两个焦点,若PF1⊥PF2,求椭圆的标准方程? 椭圆的两焦点为F1,F2在椭圆上存在8个点P使得△F1PF2为直角三角形,则椭圆离心率范围是? 1.设F1,F2分别为椭圆的左,右两个焦点. 若椭圆C上的点到F1,F2两点的距离之和等于4,写出椭圆C的方程和焦点坐1.设F1,F2分别为椭圆的左,右两个焦点.若椭圆C上的点到F1,F2两点的距离之和等于4,写出 设P是椭圆x^2/25+y^2/16=1上的点,若F1,F2是椭圆的两个焦点,则绝对值PF1+绝对值 设p是椭圆x^2/25+y^2/16=1上的点,若f1,f2是椭圆的两个焦点,则|pf1|+|pf2|= 椭圆的两个焦点为F1,F2,而A是椭圆短轴的一个端点,若AF1垂直F2,那么椭圆的离心率为? 设F1、F2分别为椭圆x2/a2+y2/b2=1的左右焦点,若在椭圆c上存在P使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是 椭圆的两个焦点为F1,F2,而A是椭圆短轴的一个焦点,若AF1⊥AF2,则椭圆的离心率为? 椭圆的两个焦点为F1,F2,而A是椭圆短轴的一个焦点,若AF1⊥AF2,则椭圆的离心率为?