已知数列{an}满足a0=1,an=a0+a1+…+an-1(n≥1),则当n≥1时,an= ( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:27:46
xYYS+ze aԔs>U IMRZ$v l& '3{n_Te^Rbv|jmʙH=8ޱ4831TGf~LFE.ZowɷoooO~9&rKg&N4_?6S?^><T0p_!'Zg #ߨ=/81h?OO/}0Iet2X?n'ԒqEؘWY[m9H;MLAĶϢf}ZVܨ$/dK'H}w*O9xijtiT^"NT}9HoFL]?$CYNvg<[C1 FVx&;Ql"/m[SUdmZird*YEZUi[#gwۚi2ݴoEƚF{ߋW}ߟ^f/iBFY"}ݴ9xu7"GbM2FމBNؿ;y(뷖CR& Nȟ*3O޽vX-' ;\,bNP@v 'yfN[-/8i*vhUOH ͪ YT`?F4Eƶ,`%2:sbH$b?!Vc@qUݱEOCnX&hGE[o/z>e=91fE(1k-d"ʍR̳b'T@"SI' mܘdVGVCݶn,k>΂^R<̹.3 y^"9[_/0p$C$bGlEtc_H5Hkvtr D`L9${1oyu%>8v7a9_-@qNgƤ9?&bI(`(.!rF2e{]$CDwWV͜:͍LTZ"N==ڭ\'a.hLs'MC(i“3o}/L/o٫Yr[2|<9>Bugs Ժ+ZD;eX,"ݵġIƐ(d'lj@Va?`Bd\QB4ꏥ!Y<=վc.#y=vdjTx` <@cnr819oMUMХ8ٝG|QUq ZaB(# fhI p% 5XI| E t18v nP |xvbTͨ ##핔X8{[f?Ǩ=Iϭcgi!C{[Dy%}$rbK8}Z&?[6zB}"ZGɛ @yF(s8$Q!. u֑6qYˈMAG=|YuB6\diau<֫(;,Ѯ)&I-{'Dt)MFe+jv\sX2N(`ꥑ_34%YQv~F8sZBD0ӟbEM%D-Ss2d,66gZo\pKQ96KJ0` 2% 'qyͪ.Q )܄,\:5Nwj&/J/mdޒT[!WѮ,"AzB&GO7NZ#RuU-jg# z7:&%JF kʍ}}Mgd  z<ۄ0A8xwd1 ukJ: x7Tc̚ݦ{MŮm;_scaUѷ9ޠ;G#sĘ~iY7 <Ռ/Tס}cN 0cq)V/?@Lxlβf2L),PFCr&aO%4IfH7<՘r9wz7 oUW]"?pWTg9qO2ha!/rQh.*\M%r:]oN(iGmU}Q9tD}C,0AJuS~vm5cbFS&:EȵSq~vٛB\Qwp?Uf)&>%qTfHll|Re%9c8$.\ƴ)y5:>KT0·\-y+rrg&N!DbnroVb"CϜcy`Q?jigl`E ܿP n-[-8WrT]nꦘkų3v(<;"I\{36}>Qi&ɀ)܊Wv.QҒi~UbU.Thcf÷8Mǣ\Jw|DyE_ERqeb^9{7!^Q Wyz<={7?؁|SV"?eB0z_B抭=L7V) ]=m#P{6Xnoo՞_luM( C?M2e\BpUexxc-dꣵ4P 8P;ղl{:kZNO$rBVrVU/A/! 'D%B-?OXnMtg?< e
已知数列{an}满足a0=1,an=a0+a1+…+an-1,求an的通项公式 已知数列{a0}满足a0=1,an=a0+a1+..+an-1(n≥1),则n≥1时,an等于 已知数列{an}满足a0=1,an=a0+a1+…+an-1(n≥1),则当n≥1时,an= ( ) 已知数列{an}满足a0=1,an=a0+a1+a2+...+a(n-1)(n>=1),则当n>=1时,an=? 高手进!已知数列{an}满足:a0=1,an=a0+a1+a2+……a(n-1)(n大于等于1),则an = _____ 已知数列{an}满足a0=1,an=p|an-1|-1(n∈N,p为常数,0 已知数列{an}满足a0=1,an=a0 +a1 …+ an-1(n≥1),则当n≥1时,an=?尽量快一...已知数列{an}满足a0=1,an=a0 +a1 …+ an-1(n≥1),则当n≥1时,an=? 已知数列{an}满足a0=1,an=a0+a1+…+an-1(n≥1),则当n≥1时,an=?问a0为什么等于a1 数列a0,a1,a2.满足:a0=√3,an+1=[an]+1/{an}([an],{an}分别表示的整数部分和分数部分),则a2004= 设数列an满足a0=0 an+1=can^3 已知数列{an}满足:a0=1,an=a0+a1+a2+……an-1(n大于等于1),则an = _____求an的通项公式 已知数列{an}满足ao=1,an=a0+a1+.+an-1(n>=1),则当n>=1时,an等于 已知数列{an}的各项都是正数,且满足:a0=1,an+1=1/2an*(4-an).(n属于N) 数列{an}满足a0是常数,an=3(n-1)-2a(n-1),求an 设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.求{an}的通项公式.设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.1.证明√(an/an-1)成等差数列2.求{an}的通项公式. 一道高中数学数列题已知数列{an}的各项都是正数,且满足a0=1,an+1(n+1是a的角标)=1/2an(4-an)1.证明an 已知数列{an}的各项都是正数且满足a0=1,an+1=an(4-an)/2(n∈N),求数列{an}的通项公式 已知数列a0,a1,a2,...,an,...,满足关系式(3-a(n+1))(6+an)=18,且a0=3,则1/a1+.+1/ai的值是多少注意:a(n+1)是一个数