函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列,n为正偶数,又f(1)=n^2,f(-1)=n,求An
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 12:36:09
x=N0NRƖ8
j#
R"h."l4(A۬5"~.{]u!^}3t}LaNjř-in/mn
C!T;\.:=+QSv{R|,˜J1k-eKטB& c=q)Og\y2,sh-/[TڽoOW+;3yK$6Uy!o7C
若(1-x)^5=a0+a1x+a2x^2+a3x^3+a4x^4+a5x^5,则函数f(x)=a2x^2+a1x+a0函数的单调减区间
已知函数f(x)==a1x+a2x+…+anx,n∈N+,且f(1)=n^2,求数列{an}的通项公式
【急】若函数f(x)=a0+a1x+a2x^2+a3x^3+……+a2011x^2011是奇函数,则a0+a2+a4+a6+……+a2010=?
已知函数f(x)=a0+a1x+a2x^2+a3x^3+anx^n的图像经过点(0,0)和(1,n^2)求通项
设f(x)=(2x-1)³,且展开得a0+a1x+a2x²+a3x³,求a0+a1+a2+a3和a0-a1+a2-3a
已知A={x|x^2+a1x+b1=0},B={x|x^2+a2x+b2=0}全集为R,试用A、B的交并补集表示下列方程和不等式的解(1)(x^2+a1x+b1)(x^2+a2x+b2)=0 ——(2)(x^2+a1x+b1)^2+(x^2+a2x+b2)^2=0 ——(3)x^2+a1x+b1不等于0 ——(4)(x^2+a1x+b1)^2+(x^2+a2x+
奇函数f(x)=a0+a1x+a2x^2+a3x^3+…+a2004x^2004,则a0+a2+…+a2004=______.
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列,n为正偶数,又f(1)=n^2,f(-1)=n,求An
已知函数 f(x)=a1x+a2x^2+.+anx^n,n是正整数,且f(1)=n^2 1.求数列a1,a2,an的通项公式 2.求证:f(1/3)
已知函数f(x)=a1x+a2x²+…+anxⁿ,a1,a2,a3,…an组成等差数列,其中n为正偶数,又有f(1)=n²1)an(2)f(½)
多项式F(X)=a0+a1x+a2x^2+...+anx^n,证明:F(X)=0有n+1个不同根,则F(X)恒等于0
已知函数f(x)=a1x+a2x²+…+anxⁿ,a1,a2,a3,…an组成等差数列,其中n为正数,又有f(1)=n² 1已知函数f(x)=a1x+a2x²+…+anxⁿ,a1,a2,a3,…an组成等差数列,其中n为正偶数,又有f(1)=n²1)求an(2)f(1/3)
已知函数f (x)=a1x+a2x^2+a3x^3+……+anx^n(n属于n+)且f(1)=n^2+2n+3求数列a1,a2,a3,……,an的通项公式,
已知函数f(x)=a1x+a2x^2+a3x^3+...+anx^n.(n∈N*)且a1,a2,a3...an构成一个数列,又f(1)=n^2,则数列{an}的通项公式是_____
设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为两个一次函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的
设关于x的一次函数y=a1x+b1与y=a2x+b2,称函数y=m(a1x+b1)+n(a2x+b2)其中m+n=1为此两个函数的生成函数(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判
设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列且a1=4,fn(1)=(3n^2+bn)/2,求:b的值求数列{an}的通项公式