1.数列{An}中,A1=8,A4=2且满足A(n+20)=2A(n+1)-An 问(1)求数列{An}的通项公式 (2)设Sn=|A1|+|A2|+……+|An|,求Sn2.数列{An}满足A1=2,对于任意的n∈N都有An>0,且(n+1)An^2+An×A(n+1)-nA(n+1)=0,又知数列{Bn}的通项公

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:17:47
xV[kG+BeZR&Ϣ/c`0KeP,[ kP!ؖ].!DEz_93{>c͜ww.#V|݅gMŠh]kZ)\3s޹bVpy7Ϛy8Rp`MμAi&(aQި.@|6&8h1Z H*ߋ*ώ#[j_ "7*|P5A c~w?v向RṁO^wec""o^[iO.GJ 2T䗟0p"ya\^k[Bo1 z K4$xZ˃c..S  ]`2Ek yA45sY"e#lm6ޠ6/:ny D9ny8A L;swd#[fUXQQyٕ]J^3Ψumt=UZ߿U/xsi d2wۆ lQqX kE. E[I}n'J 8{Yᐚ/5~MJ?T^feTL5 nL%2׳ L'OᣓT1 pHye%hԶEL'Cs\6*DED0#pr 5imTPVCǚƊ *" D"&m!}~}*^"Q[4\װb`r"]! ;WruTis6,fDvR3fg*9{H79:k%UŐU(.KL2]R\Eػic5Q8frJeJzo_>E@?"Lu17&K ox>kWiYc
在等差数列an中,a1+a3=8且a4^2=a2*a9,求数列的首项、公差 数列中,a1=8,a4=2,且满足an+2-2an+1+an=0.证明{an}是等差数列 数列{an}中,a1+a4=18,an=2an-1,则该数列前8项和等于 在等差数列an 中,a1=8,a4=2,1.求数列的通项公式an及sn 数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*1.求数列{an}的通项公式2.设Sn=|a1|+|a2|+...+|an|,求Sn3.设bn=1/n(12-an)[n属于N*]是否存在最大的整数m,使得 已知数列{an}是等比数列 、a1=2且a3+1是a1和a4的等差中项,求数列an的通项公式 1.数列{An}中,A1=8,A4=2且满足A(n+20)=2A(n+1)-An 问(1)求数列{An}的通项公式 (2)设Sn=|A1|+|A2|+……+|An|,求Sn2.数列{An}满足A1=2,对于任意的n∈N都有An>0,且(n+1)An^2+An×A(n+1)-nA(n+1)=0,又知数列{Bn}的通项公 )数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-.谢谢)数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,n属于N* 5 | 解决时间:2010-11-18 22:00 | 提问者:shuxuesg5 数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,n属于N* (1) 求 高一数列通项.数列{an}中 a1=2 ,a4=8且满足 a(n-2)=2a(n-1) - an (n∈N+)求数列{an}通项公式 数列计算问题数列an中,a1=1,公比q=2,求a4,答案是不是8 等比数列{an}中,a1=2,a4=16.求数列{an}通项公式, 等比数列{an}中 已知a1=2 a4 =16 求{an}数列通项公式 等比数列{AN}中,已知A1=2,A4=16.数列{AN}的通项公式 数列an中a1=2 an+1=2an+3则数列的第4项a4= 数列{An}中,A1=8,A4=,且满足:2A(n+2)-2A(n+1)+An=0数列{An}中,A1=8,A4=,且满足:2A(n+2)-2A(n+1)+An=0 在等差数列{an}中,已知a1=2,a4=8,求数列{an}的前四项的和S4 在数列an中,a1=1/3,且sn=n(2n-1)an,通过求a2.a3.a4,猜想an的表达式 数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn