化简[sin(kπ-α)*cos(kπ+α)]/{sin[(k+1)π+α]*cos[(k+1)π-α]}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:36:59
x){3<
6jj%@v~5P&Z#[P,ckm`~
\mq۳.k2rC8Ov/~Ӿ/-|nӎ';<_i֧l@ 8T
化简[sin(kπ-α)*cos(kπ+α)]/{sin[(k+1)π+α]*cos[(k+1)π-α]}
化简sin(kπ-α)cos(kπ+α)/sin[(k+1)π+α]cos[(k+1)π+α]
化简 {sin[α+(k+1)π]+sin[α-(k+1)π]}/[sin(α+kπ)*cos(α-kπ)],k∈Z
[sin(kπ-a)cos(kπ-π-a)]/[sin(kπ+π+a)cos(kπ+a)] 化[sin(kπ-a)cos(kπ-π-a)]/[sin(kπ+π+a)cos(kπ+a)] 化简
化简:cos[(k+1)π-α]*sin(kπ-α)/cos(kπ+α)*sin[(k+1)π+α]拜托了各位
已知α是第四象限角,化简sin(kπ+α)√[1+cos(kπ+α)]/[1-cos(kπ+α)],k属于z
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k属于Z
求证:(sin(kπ-α)cos(kπ+α))/(sin((k+1)π+α)cos((k+1)π+α))=-1,k∈Z
化简 tan(kπ-a).sin(kπ-a).cos(kπ+a)/cos(kπ-a).sin(kπ+a)
设k为整数,化简sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a)
化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
化简:sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a) k∈Z
化简 sin[(k+1)π+θ]*cos[(k+1)π-θ]/sin(kπ-θ)*cos(kπ+θ) k∈z
化简:sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a) k∈Z
化简:cos[(k+1)π-a]·sin(kπ-a)/cos[(kπ+a)·sin[(k+1)π+a] (k属于整数)
化简:sin(kπ-2)cos[(k-1)π-2]/sin[(k+1)π+2]cos(kπ+2),k属于Z
化简 sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)
化简sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)