设f(x)=e^x/(1+ax),其中a为正实数(1)当a=4/3时,求f(x)的极值点 1求f(设f(x)=e^x/(1+ax),其中a为正实数(1)当a=4/3时,求f(x)的极值点1求f(x)的极值点2若f(x)为R上单调函数,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:37:15
xNP_%Zu';&5ѥ!鲈  -̙9e+8Ѝѕg9x̷{!=]YҕV'5}f$~bNScN`pRj9e$x k 0\2 ( Yw@'"sIHy(p@cdy]ÿN>,ĿEF96-n4 #-f݆˺mAt́+%H %Z6QU`wLbKP4 C OSZX `K32T@D .*ٿJ(aU6n `yxÌy,x yQcNSy+(%܉g,Im2f ֵ,Q?e Xd^H Wj3;:ӈb⚾#
设f(x)=(e^x)/(1+ax^2),其中a为正实数如何求导? 设a∈R,函数f(x)=e^-x/2(ax^2+a+1),其中e是自然对数的底数,f'(x)等于多少? 设函数f(x)+|x-a|-ax,其中a>0,(1)解不等式f(x) 设函数f(x)=e^x/x^2+ax+a,其中a 为实数 (1),若f(x)的定义域为R,求a的取值范围 (2),当f(x)的定义域为 设函数f(x)=e^x/(1+ax^2),其中a为正实数 1.当a=4/3时,求f(x)的极值点 设函数f(x)=lnx-ax,g(x)=e^X-ax,其中a为实数. (1)若f(x)在(1,+∞设函数f(x)=lnx-ax,g(x)=e^X-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值, 设函数f(x)=lnx-ax,g(x)=e^X-ax,其中a为实数. (1)若f(x)在(1,+∞设函数f(x)=lnx-ax,g(x)=e^X-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值, 设f(x)=e^x/(1+ax),其中a为正实数(1)当a=4/3时,求f(x)的极值点 1求f(设f(x)=e^x/(1+ax),其中a为正实数(1)当a=4/3时,求f(x)的极值点1求f(x)的极值点2若f(x)为R上单调函数,求a的取值范围 设f(x)=x^3+ax^2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常数a,b属于R(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f'(x)e^(-x),求函数g(x)的极值 已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a 设f(x)=x^3+ax^2+bx+1的导数f'(x)满足f'(1)=2a,f'(2)=-b,其中常熟a,b属于R.设g(x)=f'(x)e^(-x),求函数g(x)的极值. 设函数f(x)=1/3x^3-(1+a)*x^2+4ax+24a,其中常数a>0f(x)的单调性 设f(x)=e的x次方/1+ax*2 其中a为正实数 一.当a=4/3时,求f(x )的极值点, 设f(x)=e^x/1+ax^2,其中a为正实数,若f(x)为R上单调函数,求a的取值范围 f(x)=e^(ax)[(a/x)+a+1],其中a≥-1,求f(x)单调区间 设函数f(x)=loga(1-ax),其中0 高等数学导数不等式证明设常数a>In2-1,证明:当x>0时,e^x>x^2-2ax+1证明:设f(x)=e^x-(x^2-2ax+1),则f'(x)=e^x-2x+2a,f''(x)=e^x-2.令f''(x)=0,得x=In2.当x0.所以f'(x)在x=In2处取到最小值,因此f'(x)>=f'(In2)=2-2In2+2a>0. 已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数,(1)当a=-1时,求f(x)的最大值.(2)若f(x)在区间(0,e】上的最大值为-3,求a的