设数列{An}满足a1=1.Sn=a1+a2+a3+…+an=n2 (1)当n>=2时.求Sn-Sn-1(2)求数列的通项公式An

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:32:40
x){n߳vLv̫}{m k@D#a $5,1A2yF t;ggkl6gt( |VˆY/|ں~<"}6 l: Tp6 v̳͋3jT0@!@P[#XAl:ZW|wU=Mw45|s>$\F 1|z#
设数列{An}满足a1=1.Sn=a1+a2+a3+…+an=n2 (1)当n>=2时.求Sn-Sn-1(2)求数列的通项公式An 已知数列{Sn}的通项公式Sn=n^2-21*n/2(n属于N*),又设数列{an}满足:a1=S1,当n大于等于2时,an=Sn-Sn-1又设数列{an}满足a1=S1,当n≥2时,an=Sn-Sn-1.bn=1/(2n+1)+k,且有bn<an,(m,n∈N*)恒成立,求实数k的取值范围 1.数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(1),求数列{an}的通项公式.(2),设Sn=|a1|+|a2|+……+|an|,求Sn.2,已知数列{an}的前n项和为Sn=3的n次方,数列{bn}满足b1=-1,b(n+1)=bn+(2n-1), 已知等比数列{an}满足2a1+a3=3a2.且a3+2是a2.a4的等差中项.求数列已知等比数列{an}满足2a1+a3=3a2.且a3+2是a2.a4的等差中项. 求数列{an}的通项公式 设数列{an}的前n项和为sn,求S15 数列{an}满足a1=1,设该数列的前n项和为Sn,且Sn,Sn+1,2a1成等差数列.用数学归纳法证明:Sn=(2n-1)/2(n-1)那么当n=k+1时 因a1=1,且Sn,Sn+1,2a1成等差数列 ∴Sn+1=1+1/2*Sn ∴Sk+1={Sk+2a1}/2={(2^k -1)/[2^(k-1)]+2}/2 过程 (理)设数列{an}满足a1=2,an+1-an=3•22n-1.(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.书上给的答案没看懂 设数列{an}满足a1=t,a2=t^2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n属于N*)(1)证明:数列{an}为等比数列,并求出数列{an}的通项公式(2)当1/2 设数列{an}满足a1=t,a2=t^2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n属于N*)(1)证明:数列{an}为等比数列,并求出数列{an}的通项公式(2)当1/2 数列{an}满足a1=0且1/(1-an+1)-1/(1-an)=1.设bn=(1-根号an+1)/根号n,证明sn 设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.求{an}的通项公式.设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.1.证明√(an/an-1)成等差数列2.求{an}的通项公式. 数列an的前n项和sn满足sn=2an-1,等差数列bn满足b1=a1 b4=s3求an an 桐乡...数列an的前n项和sn满足sn=2an-1,等差数列bn满足b1=a1 b4=s3求an an 桐乡公式 已知数列{Sn}的通项公式Sn=n^2-21*n/2(n属于N*),又设数列{an}满足:a1=S1,当n大于等于2时,an=Sn-Sn-1(1)求Sn的最大或最小值(2)-5/2,11/2是否为数列{an}中的项 已知数列{an}满足a1=1,an+1=3an,数列{bn}的前n项和Sn=n^2+2n+11,求数列{an}{bn}的通项公式2,设cn=anbn,求数列{cn}的前n项和Tn 设数列{An}的前n项和Sn满足Sn=A1(3^n-1)/2,且A4=54,求A1的值 设数列 an 的前n项和Sn满足Sn=a1(3^n-1)/2,且a4=54,求 a1 的值 数列{an}满足Sn+Sn+1=5/3an+1,a1=4求an (1)已知等差数列{an},满足a1+a2+…+a101=0,则有A.a1+a101>0 B.a1+a1010(2)设Sn是数列{an}的前n项和,且Sn=n^2,则{an}A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比 已知递增的等差数列{an},满足a1=1,且a1,a2,a5成等比数列1.求等差数列{an},的通项an2.设bn=an+2^an,求数列{bn}的前n项Sn