线性代数:设n(n>3)阶可逆矩阵A的伴随矩阵为A*,常数k不等于0,正负1,则(kA)*=( )(A) kA* (B) kn-1A* (C) kn A* (D) k-1A* .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:22:21
x){kOv/~6u=^ۗggrƶ_6=匭g<ٳ~Ɏ]Z:Ow j~'t]b|C355l54554t!b*X.@XL&HCl_0=ٽ6Qe';;lkj\@S!ě#Ud;f8(u6<ٽ"Xt&PEQF 1>6`W, L6
线性代数 设A为n阶矩阵,|A|=5,A+3E不可逆,求伴随矩阵A*的一个特征值
线性代数:设n阶矩阵A与B相似且可逆,则|A乘B逆|=?怎么算的?
线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆.
关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r①
证明 线性代数 线性相关 (6)设 A 是 n 阶可逆矩阵,A*是 A 的伴随矩阵,证明(A*)^(-1)=(A^(-1))*
线性代数:设n(n>3)阶可逆矩阵A的伴随矩阵为A*,常数k不等于0,正负1,则(kA)*=( )(A) kA* (B) kn-1A* (C) kn A* (D) k-1A* .
一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵
大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A
线性代数初学者:分块矩阵的伴随矩阵题目设n阶矩阵A和s阶矩阵B可逆,求 矩阵 A O ^-1 ( ) C B 不怎么会打,就是求它的逆矩阵
线性代数 练习题设A为n阶可逆矩阵,E为n阶单位矩阵,则A^(-1)[A,E]为多少要有过程
关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2
设A*为n阶矩阵A的伴随矩阵,且A*可逆,证明:A也可逆
线性代数证明题:一、设A,B均为n阶矩阵,切A的平方—2AB=E.证明AB-BA+A可逆
线性代数 考研:A、B 是n阶矩阵,E-AB可逆,证E-BA可逆.
线性代数矩阵的证明题设n阶可逆方阵A的伴随矩阵是B,证明|B|=|A|*(n-1) 后面的是指数n-1
设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵
设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1
两道线性代数题1、设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.2、设A是3阶可逆矩阵,将A的第一行与第三行互换后所得到的矩阵记为B.证明:B可逆