设函数y=f(x)(x∈R且x≠-)对定义域内任意的x1,x2恒有f(x1·x2)=f(x1)+f(x2) 证f(x)是偶函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:57:29
x){nϦnMӨԨxdǔG t5tݬ';;ΟZj0ԩ0z8ٜN.C+4A 5‹ Xq"}zZ_`gCwaU 52(ottmk5BP $ RPPSHY v.{:t+@ׄ< BA4?lx{)j$فnE
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x) 设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x) 设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x) 设f(x)是R上的函数,且满足f(0)=1,且对x,y∈R都有f(x-y)=f(x)-y(2x-y+1),则f(x)的表达式是? 设函数y=f(x)(x∈R,且x≠o)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立.判断f(x)的奇偶性 定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数 高中数学题:设函数f(x)对任意x、y属于实数R都有f(x+y)=f(x)+f(y),且x 设函数f(x)在R上可导,且对任意x∈R有|f‘(x)| 设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x) 一道有关函数奇偶性的题设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+y(y)且x>0时,f(x) 设函数f(x)是定义在R上的非常值函数,且对任意x,y有f(x+y)=f(x)f(y).(2)设A={(x,y)|f(x^2)f(y^2) 设f(x)设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,0 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 设函数发(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x) 问题补充:设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立 设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立 定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性