数列{an}满足an+1+an=4n-3(n∈N*).若{an}是等差数列,求其通项公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:47:51
xP]J@Jf!kŗ$ "}^@)T"-Ej
"m]J6<
nx2|nz~,(ae/Mh>Fv>شKᎌOԝuO?=S%ڦ-PӤd5n X?>f[# O$zd:cvz6XzH*a&7'K==~#;7Db HLMqX*dl~tܶ,ˁ= j,~"
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足a1=4,3an=5an(n下-1) +1,求an
数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列an满足a1=1/3,Sn=n(2n-1)an,求an
已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an数列{an}满足:an>0,且根号下Sn=an+1/4,求通项an
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列[An]满足a1=2,a(n+1)=3an-2 求an
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
已知数列an满足a1=4,an=n+1/n-1乘以an-1则an=
已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,求数列an的通向公式.已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.第一遍打错了。是下面这个。an+1=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2
数列{an}满足a1=1,an=3n+2an-1(n≥2)求an
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
已知数列{an}满足an+1=an+n,a1等于1,则an=?
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an