已知数列an,bn,对一切正整数n都有:a1bn+a2bn-1+a3bn-2+..anb1=3^n+1-2n-3 (1)如果an=n,求证数列bn是等(2)如果bn是等比数列,数列an是否是等差数列?如果是,求出这个数列的通项,如果不是,请说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:31:03
xU[OA+v/3[ڭbyP-DcR/HkD\ĈP1m_bQ7\ΜsNGW{VZi8իEV6_ ۰D[?kڊmLdۀ˪jS, bH:ɚM-n5+7 R h%jʼ#;[l0ʡ~rF,6V+g{qUpfeY46 C?Q"#qdH_JMz3s.K,eNNkfsDA%vν:kٜkOhWnjSI]?OrBcO;.B)lCOf'|q
已知数列{an}和{bn},对一切正整数n都有:a1bn+a2bn-1+a3bn-2+…+anb1=3^(n+1)-2n-31.如果数列{bn}为常数列,bn=1,求数列{an}的通项公式;2.如果{an}的通项公式为an=n,求证数列{bn}为等比数列;3.如果数列{bn}为 已知数列An的前n项和Sn=N^2+N,设Bn=Sn/2^n,如果对一切正整数n都有Bn≤t,求t的最小值 已知AN是等差数列,BN是等比数列,若对一切N 属于N+都有AN+1/AN=BN,则数列AN的通项公式 已知数列an,bn,对一切正整数n都有:a1bn+a2bn-1+a3bn-2+..anb1=3^n+1-2n-3 (1)如果an=n,求证数列bn是等(2)如果bn是等比数列,数列an是否是等差数列?如果是,求出这个数列的通项,如果不是,请说明理由. 已知数列{an}的前n项和sn,a1=2,na(n+1)=sn+n(n+1)(1)求数列{an}的通项公式(2)设bn=sn/2^n,如果对一切正整数n都有bn 已知数列{An}和{Bn},对于一切正整数都有:A1Bn+A2Bn-1+A3Bn-2+.+AnB1=3^(n+1)-2n-3成立.I:如果数列An的通项公式为An=n,求证数列Bn是等比数列II:如果数列Bn是等比数列,数列An是否是等差数列,是,求其 已知数列{an}{bn},对任意正整数N,都有:a1bn+a2bn-1+a3bn-2+……+an-1b2+anb1=2^n+1-n-2已知数列{an}{bn},对任意正整数N,都有:a1bn+a2bn-1+a3bn-2+……+an-1b2+anb1=2^(n+1)-n-21、若数列{an}是首项和公差都是1 已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任 已知【an】是递增数列,且对任意n是正整数,都有an=n^2+bn恒成立,则实数b的取值范围是 已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通用公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果 已知数列an的前n项和为sn,且对任意正整数n都有an是n与sn的等差中项(1)bn=an+1,求bn 已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2x+2-4.(,x+2是2的x+2方)(1)求数列{an}的通项公式(2)设bn=an*log2an,求数列{bn}的前n项和Tn 数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=(4+an)/(1-an)(n是正整数)求数列{bn}的通项公式 已知数列{an}的前n项和为Sn,且对一切正整数n,点(n,Sn)都在函数f(x)=2^x+2 -4的图像上.1.求an的通项公式2.设bn=an log2an,求数列{bn}的前N项和Tn. {a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比{a} 、{b} 都是各项为正的数列,对任意的正整数n,都有an,bn^2,an+1 成等差数列,bn^2,an+1,bn+1^2成等比数列 已知数列{an}的前n项和为Sn,且对任意正整数n都有an是n与Sn的等差中项.(1)若bn=an+1,求数列{bn}的通项公式.(2)若cn=2n+1/bn,数列{cn}的前n项和为Tn,求证:Tn 已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)2^(n-2)+1(1)求数列{an}、{bn}的通项公式.(2)设数列{bn}的前n项和为Tn,若T3n-Tn≥t对一切正整数n都成立,求实数t 已知数列{an}的前n项和为Sn,且Sn=(n²/2)+(11n/2).数列{bn}满足2b(n+1)=b(n+2)+bn.(n∈N*),设cn=3/[(2an-11)(2bn-1)],数列{cn}的前n项的和为Tn,求不等式Tn>k/57对一切n∈N*都成立的最大正整数k的值.说明:c右侧