设S是由满足下列条件的实数所构成的集合条件:(1)1∈S; (2) 若a∈S ,则1/1-a∈S.1、 若2属于S,则S中必有另外两个数,求出这个数;2、求证:若a∈S,且a≠0,则1-1/a∈S;3、集合S能否只含有一个元
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:00:39
xTRA~=jB0TS9 B`(.NBzvVʊL|_=f0=ѝNlPiA=PUU
hYt9U˩+J.L+or0poO9}0 ̽abNҊ
y
%b4ABAbvYܗӳMG+cȺW.F0Z15FJ,>#1dĄd<kঽTyj)!s]A0t?A1r1ӯɁSHx3h!l*TYP.:4TF?3N%CL
xqA7%%V(+҆4B6'yk\@s/B`Tx8Kdhl(y*Wy
nrFDHLuqG!J1彇I+]#];p>![Zô˴>*^ ƁDİD´ؓZ8s ʀr4ĉk'YۡO>ZSV!VH{h*X^Ȥ
如图.设S是满足下列两个条件的实数所构成的集合:
设s为满足下列两个条件的实数所构成的集合
设S是由满足下列两个条件的实数所构成的集合:(1)1不属于S (2)若a属于S,则1/(1-a)设S是由满足下列两个条件的实数所构成的集合:(1)1不属于S (2)若a属于S,则1/(1-a)属于S.求证:若a属于S,则
设S满足下列两个条件的实数所构成的集合:1、S内不含1;2.、若a属于S,则(1—a) 分之
设S是由满足下列两个条件的实数所构成的集合:(1)1不属于S (2)若a属于S,则1/(1-a)属于S.(1)求证:若a属于S,1-1/a属于S(2)求证:集合S中至少有三个不同的元素
设S是满足下列两个条件的实数所构成的集合:(1)1不属于S;(2)若a∈S,则1/1-a∈S.求证1-1/a∈S
设S是由满足下列条件的实数所构成的集合:求证:若a∈S,且a≠0,则1-(1/a)∈S.求能让我绕过来的!条件:一、1不属于S,二、若a∈S,则1/(1-a)∈S,
11.设S为满足下两个条件的实数所构成的集合:1.s不含1
设S是满足下列两个条件的实数所构成的集合:①1∉S;②若a∈S(解题步骤不懂)图中绿色圈圈的部分不是很理解,
设S是由满足下列两个条件的实数所构成的集合:(1)1不属于S (2)若a属于S,则1/(1-a)属于S.1.证明若2属于S,则S中必有两个元素,并求出这⒉个元素,2.S中的元素能否有且只有一个?为什么?
设S是满足下列两个条件所构成的集合,①1不属于S ②若a∈S,则1/1-a∈S
设S是由满足下列条件的实数所构成的集合(1)1不包含于S(2)若a包含于S,则1/(1-a)包含于S.求证:若a包含于S,则1-1/a包含于S
设S为满足下列两个条件的实数所构成的集合①S内不含1②若a∈S,则1/1-a∈S问:在集合S中元素的个数能否只有一个?
设S是满足下列条件的实数所构成的集合:①0不属于S,1不属于S;②若a∈S,则1/1-a∈S.证明:(1)S不可能是单元素集合,也不可能是二元素集合,即S至少有三个元素;(2)S是一个三元素集合,且
设S是由满足下列条件的实数所构成的集合:条件:(1)1∈S; (2) 若a∈S ,则1/1-a∈S.1、 若2属于S,则S中必有另外两个数,求出这个数;2、求证:若a∈S,且a≠0,则1-1/a∈S;3、集合S能否只含有一个
设S是由满足下列条件的实数所构成的集合条件:(1)1∈S; (2) 若a∈S ,则1/1-a∈S.1、 若2属于S,则S中必有另外两个数,求出这个数;2、求证:若a∈S,且a≠0,则1-1/a∈S;3、集合S能否只含有一个元
设S是由满足下列条件的实数所构成的集合条件:(1)1∈S; (2) 若a∈S ,则1/1-a∈S.1、 若2属于S,则S中必有另外两个数,求出这个数;2、求证:若a∈S,且a≠0,则1-1/a∈S;3、集合S能否只含有一个元
设S为满足下列两个条件的实数所构成的集合(1).S内不含1(2).若a属于S,则1/(1-a)属于S求证:若a属于S.则1-(1/a)属于S