正三棱柱ABC-A1B1C1内接于半径为2的球,球心为O,若A,B两点的球面距离为π,则正三棱柱的体积为?懂正解,但不知道自己的思路错在哪里...我这样想的:因是正三棱柱,底面为正三角形,底面所在圆面周

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:38:31
xSo@=~m Flp=@*"B@Xd+bB[)=wO\WU0|2&~0i:~NlM)fTVROiZ2"^_ qoI<62x9J*)\+Ѱ;.WS.=j_c1+䀉P!E25QET̮XaE;W6 TUeŪZ`9jӷ}ִw%5`JfֱNWƣ?/ y6ţl6тw\=If,ZNL@ ܝ^/X߷b;Md{mUa #Ox*ݕAކ mW~1i"&Y32'EcC&/ ͵)5gW@|#-Оe>NlY&N؟sFC%yt)Dr쁘O ) 9n?
正三棱柱ABC-A1B1C1内接于半径为1的球内,则当该棱柱体积最大时,其高为_________. 正三棱柱ABC-A1B1C1内接于半径为二的球,若A、B两点的球面距离是л,则三棱柱的体积为() 正三棱柱ABC-A1B1C1内接于半径为2的球,若A,B两点的球面距离为派,则球心到平面O的距离为 正三棱柱ABC-A1B1C1内接于半径为2的球,球心为O,若A,B两点的球面距离为π,则正三棱柱的体积为?懂正解,但不知道自己的思路错在哪里...我这样想的:因是正三棱柱,底面为正三角形,底面所在圆面周 正三棱柱内接于球的问题正三棱柱ABC-A'B'C'内接于半径为2的球,若A、B两点的球面距离为π,则正三棱柱的体积为? 正三棱柱ABC-A1B1C1内接于半径为二的球,若A、B两点的球面距离是л,则三棱柱的体积为()A、B两点的球面距离是л,(最好附图),求详解 正三棱柱ABC-A1B1C1中,AB1=根号3BB1.证明:AB1垂直于BC1. 已知正三棱柱内接于一个半径为2的球,则正三棱柱的侧面积取得最大值时,描述:其底面边长为多少 立体几何.....正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为根号3,D为AC中点,求证B1C平行于面A1BD 如图 已知正三棱柱ABC-A1B1C1中 AB=根号下2AA1点D 为A1C1的中点 A1C垂直于平面AB1D 如图,正三棱柱ABC——A1B1C1中,D为CC1中点,AB=AA1,证明BD垂直于AB1 正三棱柱ABC—A1B1C1的底面边长为2,侧棱长都是根号3,D是AC的中点,求证BC平行于平面A1BD 正三棱柱ABC-A1B1C1中,D为AC中点,当AB1垂直于BC1时,求二面角D-BC1-C的余弦值 若正△A1B1C1内接于正△ABC的内切圆,则A1B1:AB的值为 正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,求证:AB1垂直平面A1BD 正三棱柱ABC-A1B1C1所有棱长都为2 D为CC1中点 求证:AB1垂直平面A1BD 在正三棱柱ABC-A1B1C1中,所有棱长均为1,则B1到平面A1BC1的距离为? 一个半径为1的球内切于正三棱柱,则该正三棱柱的体积为多少