线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 17:01:42
xQKN@KMv]aI2&]hCՠAMPķ рJp^ht|lµ^vVzu>Sr,huFg0QHծڃE81EJb6;1:$NR~DT;JԠw
7c*`l sNF A)D9/\Iݾ%i
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
线性代数N位向量欧式空间问题已知向量a1=(1,1,1),求非零向量a2,a3,使a1,a2,a3两两正交.
设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an)
设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次设a1 a2.a(n-1)是欧式空间R的n次中一正交向量组,b1 b2属于R的n次,且b1与每个ai内积等于0,b2与每个ai的内积等于0,证明b1 b2线性无关.
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则b1=b2
证明勾股定理的推广,若欧式空间中向量a1,a2...am两两正交,则||a1+a2+...+am||^2=||a1||^2+...+||am||^2
a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为...a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为2 -1 2-1 2 -12 -1 2设向量t=a1+a2,求向量t的长度|t|=?
线性代数证明题:设向量组a1、a2,.,a(m-1) (m大于等于3)线性相关,向量组a2,.,am线性无关,求am能由a2,…,am-1线性表示
线性代数中关于线性空间的一道题设a1,a2,a3是实线性空间V中的向量,且有k1a1+k2a2+k3a3=0 (k1*k2不等于0)求证:L(a1,a2)=L(a2,a3)说实话……我没怎么看懂这题
设V是n维欧氏空间,a1,a2...an是V的一组基,b属于V,若(b,ai)=0,i=1,2,...,n,试证:b=0线性代数
一个基础的线性代数问题. 设a1,a2,a3...an 为n维向量空间V的一个基. 为什么 r([一个基础的线性代数问题.设a1,a2,a3...an 为n维向量空间V的一个基.为什么 r([a1,a2...an])=n ?不用考虑列向量的行数吗?比
设A=max{a1,a2,.am},其中ak>0,lim(a1^n+a2^n+…+am^n)当n趋于无穷时?
线性代数证明:在n维向量空间中,如果a1,a2,…an线性无关,则任一向量b可以由a1,a2…an表示
线性代数证明线性相关题设n维向量a1,a2,a3 线性相关,a2,a3,a4 线性无关,试证明a1 可以由a2,a3 线性表示.
欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,试解释并构造以上过程.
非常基本的线性代数证明题1.设a1,a2,...,an是一组n维向量,已知n维单位坐标向量e1,e2,...,en能由它们线性表示,证明a1,a2,...,an线性无关.2.设a1,a2,...an是一组n维向量,证明它们线性无关的充要条件是任
设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.1 -1 2-1 2 -12 -1 6(1)令γ=a1+a2,证明γ是一个单位向量(2)若β=a1+a2+ka3与γ正交,求k的值