已知M、N分别是椭圆C的长轴的两个端点,且PM、PN斜率之积为为-...貌似答案是0.5

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 20:42:06
xMKAǿά.t[teکI{nQiB QAƷ0͋}Q:03>einۧ6o?o3,{C~2 npS29Ci.Gd>]r2֟DI\斃W|ٖ#aĢɿf z{:iD2n>%+^\< glHĪ6_ERBB>4=arX%C/<䯤C:|Z2`lg{P9,ScPW6&dQڡ-M r~6.~'T;
已知M、N分别是椭圆C的长轴的两个端点,且PM、PN斜率之积为为-...貌似答案是0.5 已知M、N分别是椭圆C的长轴的两个端点,且PM、PN斜率之积为为-3/4,则椭圆的离心率为 已知A,B分别是椭圆x2/a2+y2/b2=1的左,右两个焦点,O为坐标原点,点P(-1,3/2)在椭圆上,线段PB与Y轴的交点M为线段PB的中点.(1)求椭圆的标准方程(2)点C是椭圆上异与长轴端点的任意一点,在△ 椭圆的两个焦点分别是M,N.过N作椭圆长轴垂线交椭圆于点P,若三角形MPN为等腰三角形,则椭圆的离心率是?答案是不是根号2-1 已知椭圆C的中心在坐标原点O,焦点在x轴上,F1,F2分别是椭圆C的左右焦点,M是椭圆短轴的一个端点,过F1的直线L与椭圆交于A,B两点,三角形MF1F2的面积为4,三角形ABF2的周长为8根号2,求椭圆C的方程 已知线段AB是与x轴垂直的,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的弦,点C,D分别是椭圆长轴的左右两个端点,求直线AC与直线BD交点P的轨迹方程 已知A,B分别是椭圆x^2/a^2+y^2/b^2=1的左右两个焦点,O为原点坐标,点p(-1,根号2/2)在椭圆上,线段PB与y轴1,求椭圆的标准方程2,点C是椭圆上异于长轴端点的任意一点,对于三角形ABC,求sinA+sinB/sinC的值已 一道关于高中椭圆的数学题P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的任意一点(异于顶点),椭圆短轴上两个端点分别是B1,B2.若直线PB1,PB2分别与X轴交于点M,N,求证:OM与ON的长度之积为一个定植. 如图,已知a、b是两条相互垂直的异面直线,其公垂线段AB的长为定值m定长为n(n>m)的线段PQ的两个端点分别在a,b上移动,M、N分别是AB、PQ的中点.求证:MN的长为定值 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的长,短轴端点分别为A,B,从此椭圆上一点M向x轴1.求椭圆圆心率e2.设Q是椭圆上任意一点,F1,F2分别是左,右焦点,求角F1QF2的取值范围.已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的长,短 20分…已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线L 与Y 轴交于点(0,m ),与椭圆C 交于相异两点A 、B ,且向量A P=2向量 P B .求(1)椭 已知中心在原点O,焦点在x轴上的椭圆C离心率为根号3/2,点A,B分别是椭圆C的长轴、短轴的端点.点O到直线AB的距离为五分之六倍根号五.(1)求椭圆C的标准方程(2)已知点E(3,0),设点P,点Q是椭圆C 已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,PA垂直于PF.(1)求点p的坐标(2)设M是长轴AB上的一点,M到直线AP的距离等于|MB|,求M到椭圆上点 问两道圆锥曲线题1.在三角形AFB 中 角AFB=150度 S三角形AFB=2-根号3 以F为一个焦点 AB分别是椭圆的长.短轴端点的 椭圆方程是?2.已知圆 X^2+y^2-6x-55=0 动圆M经过定点A(-3,0) 且与已知圆相内切 则圆 已知椭圆C的中心在原点,焦点在x轴上,离心率为2/3,且过点(3倍根号3,根号5),点A,B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直于PF.求:(1)椭圆C的方程 点P为椭圆x²/a²+y²/b²=1(a>b>0)上任意一点,异于顶点,椭圆短轴的两个端点分别是B1,B2,若直线PB1,PB2分别与x轴交于点M,N求证:OM*ON为定值 已知A.B是椭圆x2/a2+y2/b2=1(a>b>0)长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且k1k2不等于0,若|k1|+|k2|的最小值为1,则椭圆的离心率为 高中数学——曲线的极坐标方程已知曲线C的方程是P=[ 25/(13-12cosθ)],那么其长轴的两个端点的极坐标分别是详细!谢谢