函数f(x),x属于R 且f(x)不恒为0 若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2) 求证 f(x)为偶函数!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:06:01
x){ھ i:O7{/HɎ) ';z5Nzc‹OJ>ٽYKu* u*t^6}6PHS2l@,M- ilcӋ Sw=mV&H_`g3(%%%::jk `K @&-k V⁤0$ H,CXb6h]9 sJPl%(g Ov/E {: 'C @0/
定义在R上的函数f(X)满足任意 x,y属于R恒有f(xy)=f(X)+f(y),且f(X)不恒为0,求f(1)和f(-1)的值;判断f(X)的奇偶性;若 x>=0时f(X)为增函数,求满足不等式f(X+1)-f(2-x) 函数f(x),x属于R 且f(x)不恒为0 若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2) 求证 f(x)为偶函数! 定义在R上的函数f(x)满足对任意x,y属于R均有f(xy)=f(x)+f(y),且f(x)不恒为零,证明:1.f(x)的奇偶性2.若x大于等于0时为增函数,求满足不等式f(x+1)-f(2-x)小于等于0的x取值集合 已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2) 已知f(x)是定义在R上的不恒为0的函数对于任意的x y属于R有f(xy)=xf(y)+yf(x)1.求f(-1),f(1)的值2.判断函数的奇偶性3.若y=f(x)在[0,+无穷)上是增函数且满足f(x)+f(x-1/2) 已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性. 已知函数f(x)是一次函数,且2f(x)+f(-x)=3x+1对x属于R恒成立,求f(x) 已知函数y=f(x)的定义域为R,且f(x)不恒为0,且对任意x,y属于R,都有f(x+y)=f(x)+f(y)求求f(0)的值;判断函数y=f(x)的奇偶性;当x>0时,f(x)<0,判断函数y=f(x)的单调性.请写明 若函数f(x)(x∈R)有f(x)=f(|x|),且f(x)不恒等于零,则f(x)的奇偶性为? 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 已知F(X)是在定义在R上的恒不为0的函数,且对于任意的x,y属于R,都满足f(x)·f(y)=f(x+y)1.求f(0)的值并且证明对任意的x属于R,有f(x)大于02.设当x小于0时,都有f(x)大于f(0)证明f(x)在(-无穷大,+无穷大 已知函数f(x)=|2x-m|和g(x)=-x方+c(m,c为常数),且对任意x属于R,都有f(x+3)=f(-x)恒成立设函数F(x)满足对任意x属于R,都有F(x)=F(-x),且当x属于【0,3】时,F(x)=f(x),若存在x1,x2属于【-1,3】,使得|F(x1)-g(x2)| 已知函数y=f(x)(x属于R,且x不等于零) 对任意非零实数x1,x2,恒有f(x1乘以x2) =f(x1)+f(x2).求证:f(1/X)=-F(X) 函数为f(x)=x-ae^x 若x属于R f(x) 1.函数f(x)对其定义域中的任意x都有f(x)=f(12-).设f(x)=0有n个根,且这n个根的和为1992.求n值.2.已知函数f(x)的定义域为R,但f(x)不为0,并且对任意a.b属于R.f(a+b)+F(a-b)=2f(a)f(b)恒成立判断f(x)的奇偶性若存 已知f(x)是一次函数,且2f(x)+f(-x)=3x+1对x属于R恒成立,则f(x)= 设定义在R上的函数f(x),对任意x,y,有f(X+y)=f(x)*f(y),且当x>0时,恒有f(X)大于1,若f(1)=21,求f(0) 2,求证;x属于R时f(x)为单调递增函数3,解不等式f(3x-x^2)>4 恒为正的函数f(x),对任意x,y属于R有f(x+y)=f(x)*f(y),如果x>0时,f(x)