C(0,0)+1/2C(1,n)+1/3C(2,n)+…1/kC(k-1,n)…+1/(n+1)C(n,n)=1/(n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:43:20
xPAO0+VDod !z7`h4b2,Aw&A~m`84^YC@&ED:hh&e%2Oz1-g:"l*6,SXOB2dsis-Y˃{,O!^ϖuXM ͲJ>ObH8D1
证明:c(n,0)c(n,1)+c(n,1)c(n,2)+...c(n,n-1)c(n,n)=c(2n,n-1)
C(0,n)+2C(1,n)+3C(2,n)+...+(r+1)C(r,n)+...+(n+1)C(n,n)=___(n属于N*)
C(n.0)+2C(n.1)+4C(n.2)+C(n.2)+C(n.3)…+C(n.n)=?
C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)为什么等于什么
已知C(n,0) +2C(n,1) +2^2C(n,2) +2^3C(n,3)+……+2^nC(n,n)=729,则C(n,1)+C(n,2) +……C(n,n)=多少
组合:C(n,0)+C(n,1)+……+C(n,n)=n^2
急1)C(n,0)+2C(n,1)+3C(n,2)+4C(n,3) +...+(n+1)C(n,n)=(n+2)*2^(n-1)2) C(n,0)+3C(n,1)+5C(n,2)+...+(2n+1)C(n,n)=(n+1)*2^n
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
求证:C(0,n)+2C(1,n)+.+(n+1)C(n,n)=2^n+2^(n-1)
如何证明C(0,n)+C(1,n)+C(2,n)+.+C(n-1,n)+C(n,n)=2的N次方 不用数学归纳法
组合恒等式的证明:C(r,r)+C(r+1,r)+C(r+2,r)+…+C(n,r)=C(n+1,r+1) C(n,1)+2C(n,2)+…+nC(n,n)=n2^(n-1)还有:C(m,r)*C(n,0)+C(m,r-1)*C(n,1)+…+C(m,0)*C(n,r)=C(m+n,r) (C(n,o))^2+(C(n,1))^2+(C(n,2))^2+(C(n,3))^2+…+(C(n,n))^2=C(2n,n)
猜想组合公式C(0,n)+C(1,n)+C(2,n)+...C(n.n)并证明
【急】三个组合恒等式求证明C(r,r)+C(r,r+1)+C(r,r+2)+,+C(r,n)=C(r+1,n+1)C(r,m)*C(0,n)+C(r-1.m)*C(1,n)+.+C(0.m)*C(r,n)=C(r,m+n)[C(0,n)]^2+[C(1,n)]^2+.=C(n,2n)
如何证明C(0,n)+C(2,n)+C(4,n)+...+C(n,n)=2的(n-1)次方 还有C(1,64)+C(3,64)+...+C(63,64)=?
C(11,1)+C(11,3)+.+C(11,11)=?证明:C(n,0)+C(n,2)+C(n,4)+.+C(n,n)=2(n-1) 本人高中生,没什么分,
求证明这个等式C(n,0)/1 - C(n,1)/3 + C(n,2)/5 - ...+(-1)^n *C(n,n)/(2n+1) = [2*4*6*...*(2n)]/[3*5*7*...*(2n+1)]
证明C(0,n)+C(1,n+1)+C(2,n+2)+...+C(k,n+k)=C(k,n+k+1)
组合数公式的题c(n,1)+2c(n,2)+...+nc(n,n) = n[c(n-1,0)+c(n-1,1)+...+c(n-1,n-1)]=n2^n-1