x1,x2……xn 都是正实数,求x1 + x2/x1 + x3/x1x2 + …… +x2010/x1x2x3……x2009+4/x1x2x3……x2010的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:46:28
xŒJ0_ec9Mtn7$jnd*"QDPw[7Fr97*$f&O3niH3v91`ԏDSH'L%13g:lt[ƽ+w폪FAyڐs<`v^L{ʈ2kh!ka<(.deXF~P!Cd J^8[G 9!cab"A-"0$K,m8)q3F)
b,E`nD LKT3 \8x@mW3Q5M[细j4/a6vd89kj}[w7{w}]8/x`2J
x1,x2……xn 都是正实数,求x1 + x2/x1 + x3/x1x2 + …… +x2010/x1x2x3……x2009+4/x1x2x3……x2010的最小值
求教,均值不等式设x1,x2,……,xn为正实数,S=x1+x2+……+xn,求证:(1+x1)(1+x2)……(1+xn)
设整数n>=2,正实数x1,x2,……xn满足(x1+x2+……xn)(1/x1+1/x2+……1/xn)=n^2+1求证:(x1^2+x2^2+……+xn^2)(1/x1^2+1/x2^2+……+1/xn^2)>=n^2+4+2/n(n-1)
设x1,x2,…,xn是实数,|xi|
对于n个给定实数X1,X2,X3,…,Xn,证明:|X1+X2+X3+…+Xn|≤|X1|+|X2|+|X3|+…+|Xn|
设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n
柯西不等式证题X1,X2,X3……Xn是任意实数,求证:X1/(1+X1^2)+X2/(1+X1^2+X2^2)+……+Xn/(1+X1^2+X2^2+……+Xn^2)
已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+x2+…+xn
设排列x1,x2…Xn是奇排列,那么Xn,Xn-1,…X1的奇偶性如何?求详解,
求x1+x2+x3+x4+…xn-1公式
已知X1X2…Xn=1,且X1,X2…Xn都是正数,证:(1+X1)(1+X2)...(1+Xn)>=2^n
已知X1X2…Xn=1,且X1,X2…Xn都是正数,证:(2+X1)(2+X2)...(2+Xn)>=3^n如题
求所有的正整数n(n≥2),满足x1x2+x2x3+````+xn-1xn≤((n-1)/n)(x1^2+x2^2+````+xn^2)x1,x2,x3,x4````xn均为正实数
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n 用柯西不等式
已知x1,x2,…,xn的取值都是+1或-1,并且x1/x2+x2/x3+x3/x4+…+xn-1/xn+xn/x1=0,求证n必为4的倍数
一道数学竞赛题求所有的正整数n(n≥2),使得对任意正实数x1,x2,…,xn,均有x1x2+x2x3+…+x(n-1)xn≤[(n-1)/n]×(x1²+x2²+…+xn²)
设有n个实数X1 X2 …… Xn 其中每一个不是+1就是-1,且X1/X2+X2/X3+……+Xn-1/Xn+Xn/X1=0 试证n是4的倍数那个 1啊2阿n啊n+1啊都是角标