几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.有什么例题麽

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:25:21
几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.有什么例题麽
xXKOY+ĉc^Fٌi^ӭzz~,F@O` a06Ie:{_Sͣ#MoFUu9y}zsڶ;ۘ5tވdI.}\; y'rOMmÿU]ݻͤ𝐬fl+nw ;YϾ>?Q=?gcr[˥H'c 04|$mw2nsQw;`ZWNtÄe7EwfAM6.^]k ܏ tE0"x4aFQz,3S۞'N+n[Ye:2#M"Yڿ9ڶZ kg0b;SweLGe&.xxMF؈@gd:YX_GDU'<"Ib9(>z\Dn(@&*lɕjl$v$0ryB!r gA+ w::So/f:sUϦsi> wť~?NqqYyRrbtT!gOwvgY8'dIrzxk>]4H 24 @zK+fWLW\B$B MTGPܫME7v6L= .tCA#*>sdDAS$B7qLL4QL 'z20/:\\$cz$J&<>RxR?ڨ9v$ 8DV JU\ :< <X i@=ȭ{jsyД {^`[g@|3z&Se©Mbh<[5/;yՋ>Fgb|D)O?(uɹyE||߰9pӿ㳢5m,jͪg:7&)?\X+ZƉf 27Ź7?A?xm49W)AaBh$F8Rx$NAZ j<2 }NIH]Xmc2/Wp/ =e]1>|OmT;1>=:v2̓:Wį33QGX}B|;n-3z -kvgàfXɛn3[~s T VXDǏ:_ă, :أ[+]xE%߱xĤgp@:E:A;VEԛ[nX-?rqm>ܢޛIB9!;YisBIvX>%$܋6|*,v^Mnm߇o[+^۫Gu).17l9<量)!:B AW%fz\]eUK)1[4ʹTxNЪ 0\ǗZE1hnuQ k!w,ܹtA!;w93ʂ̻eD `Bk&7鼢ҵx+EL(!&lvμ%^!!{),5+l1y1cK0J+Υ_' |bDc3,:OTX׌goLYpÚ[O-y--b'.!^N| t_?6RǦ8݂J'fN$&U/)Fvǡݸ/21hR9ggʭ.f.6ߕ^b\6a9i M1*_alJ+/fK%k}XB20QCNާmX#3۠L*\ce~)r?"E=~jm70N5\Ϸ!{A3*[Ns' T[$UWSGlf}XgW GM{k 똝baiFQ<"ded+dc={cJ

几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.有什么例题麽
几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.
有什么例题麽

几个重要定理的内熔:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理.有什么例题麽
塞瓦定理 塞瓦定理 开放分类: 数学、三角形、定理 塞瓦定理 设O是△ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ① 而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/BF)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/ [(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点. 托勒密定理 定理的提出 [编辑本段] 一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出. 定理的内容 [编辑本段] 托勒密(Ptolemy)定理指出,圆内接凸四边形两对对边乘积的和等于两条对角线的乘积. 原文:圆内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和. 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明 [编辑本段] (以下是推论的证明,托勒密定理可视作特殊情况.) 在任意四边形ABCD中,连接AC,作∠BAE=∠CAD,因为∠ABE=∠ACD 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD (1) 又有比例式AB/AC=AE/AD 而∠BAC=∠DAE 所以△ABC∽△AED相似. BC/ED=AC/AD即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 所以命题得证 推论 [编辑本段] 1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号. 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 推广 [编辑本段] 托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线. 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模, 得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 注意: 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价. 2.四点不限于同一平面. 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD
满意请采纳

梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×B...

全部展开

梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。 我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。 例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。 另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。 从A点出发的旅游方案共有四种,下面逐一说明: 方案① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。 按照这个方案,可以写出关系式: (AF:FB)*(BD:DC)*(CE:EA)=1。 现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。 从A点出发的旅游方案还有: 方案② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式: (AB:BF)*(FD:DE)*(EC:CA)=1。从A出发还可以向“C”方向走,于是有: 方案③ —— A→C→E→D→F→B→A,由此可写出公式: (AC:CE)*(ED:DF)*(FB:BA)=1。 从A出发还有最后一个方案: 方案④ —— A→E→C→D→B→F→A,由此写出公式: (AE:EC)*(CD:DB)*(BF:FA)=1。 我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。 值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。当直升机降落在B点时,就会有四项因式。而在C点和F点,既会有三项的公式,也会有四项的公式。公式为四项时,有的景点会游览了两次。 不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。 现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。那些复杂的相除相乘的关系式,不会再写错或是记不住吧。

收起