f(x)在[0,1]上连续(0,1)上可微,并且f(0)=f(1)=0,f(1/2)=1,证明至少存在一个a使得f ' (a)=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:49:17
xP
@|oY}`!uh p
CԗޢzN00ZbX,b+Kg̒4l:HǦF$5lDDN9\LbǒͲQ*
hտuew(R##p_-reiLʱ̳s^W!˖_v\e}ޛ
f(x)在[0,1]上连续(0,1)上可微,并且f(0)=f(1)=0,f(1/2)=1,证明至少存在一个a使得f ' (a)=1
f(x)在[0,1]上连续(0,1)上可微,并且f(0)=f(1)=0,f(1/2)=1,证明至少存在一个a使得f ' (a)=1
f(x)在[0,1]上连续(0,1)上可微,并且f(0)=f(1)=0,f(1/2)=1,证明至少存在一个a使得f ' (a)=1
这个符合罗尔定理的条件,所以命题得证.
f(1/2)=1是多余条件
f(x)在(0,1)上连续,证明
设函数f(x)在[0,无穷)上连续可导,且f(0)=1,|f'(x)|0时,f(x)
f(x)在(0,1]上连续可导,且lim[f ' (x)*√x]存在,x趋于0正.求证f(x)在(0,1]上一致连续
大一微积分,求帮忙. 已知f(x)在[0,1]上连续可导,且f(0)=0,f(1)=1,证明∃x∈大一微积分,求帮忙.已知f(x)在[0,1]上连续可导,且f(0)=0,f(1)=1,证明∃x∈(0,1),使得f(x)=1-x
f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)满足F'(x)≤0如题,
f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设f(x)在[0,1]上连续,且f(x)
高等数学问题:设f(x)在[0,1]上连续,且f(x)
函数可积 若[a,b]上 f(x)可积 g(x)连续, 则f(g(x))未必可积. 请举个例子貌似 1/x^2 在[0,1]上是黎曼可积的~ 积分发散是广义积分吗? 我还没学过~ 前两天问了老师, 老师说[a,b]上 f(x)可积 g(x)连
f(x)在[0,1]上有连续导数,f(0)=0,0
设f(x)在[0,1]上有连续导数,f(0)=0,0
设f(x)在[0,1]上有连续导数,f(0)=0,0
设f(x)在[0,1]上连续,试证∫(0,π/2)f(|cosx|)
设f(x)在区间[0,1]上连续,且f0)f(1)
设f(x)在[0,1]上连续,且f(t)
证明:函数f(x)=sin(x)/x在(0,1)上是一致连续的
设函数f(x)在[0,1]上连续,且满足f(x)=x^2-3x∫f(t)dt(上限为1,下限为0),试求f(x) 可写在纸上拍下来,