已知双曲线x^2/a^2—y^2/b^2=1的右焦点为F,右准线与一天渐近线交于点A,△OAF的面积为a^2/2(O为原点),则两条渐近线的夹角为多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:45:05
已知双曲线x^2/a^2—y^2/b^2=1的右焦点为F,右准线与一天渐近线交于点A,△OAF的面积为a^2/2(O为原点),则两条渐近线的夹角为多少?
xՓn@_'T+•CHvj/DJI&1IJbIMlijHyȳxβ&Ԫ'3|ۙ%_-sv܇6=p_H쥱"LS6}5}1k 14{LDC/7B`$o==+^ZWÝ.\*=lN0^?/De;p6~RNsI}D-saz9G7ޚbif)t0+2C P$yIݥ0cp ,o@# 6XZgV4gV֒OQȼpMXVi\$ PW kҕHbyؙ Tv5˥ulNӍ#x~EdzԒFLuUc\rNWI|| o!9|z^Tg/OƤ

已知双曲线x^2/a^2—y^2/b^2=1的右焦点为F,右准线与一天渐近线交于点A,△OAF的面积为a^2/2(O为原点),则两条渐近线的夹角为多少?
已知双曲线x^2/a^2—y^2/b^2=1的右焦点为F,右准线与一天渐近线交于点A,△OAF的面积为a^2/2(O为原点),
则两条渐近线的夹角为多少?

已知双曲线x^2/a^2—y^2/b^2=1的右焦点为F,右准线与一天渐近线交于点A,△OAF的面积为a^2/2(O为原点),则两条渐近线的夹角为多少?
鉴于双曲线渐近线关于x轴的对称性,不妨设A点是斜率为正的渐近线与右准线的交点
双曲线斜率为正的渐近线方程为:y=(b/a)x
而右准线为:x=a^/c
于是,渐近线与右准线的交点A,其横坐标就是a^/c,纵坐标可求出是:
y=(b/a)*(a^/c)=ab/c
画出示意图,显然,△OAF的面积若是以OF为底边计算的话,其上的高就是A点的纵坐标的绝对值,即:ab/c
于是,S△OAF=|OF|*(ab/c)/2=c*(ab/c)/2=ab/2
由题意有:ab/2=a^/2
a=b
于是,双曲线两条渐近线就是:y=±x
它们的夹角很容易得出是90°

已知双曲线x^2/a^2-y^2/b^2=1(a>0b 已知双曲线a^2|x^2-b^2|y^2=1(a>0,b 已知双曲线x^2/a^2—y^2/ b^2 =1(a>b>0)和圆O:x^2+y^2=b^2(其中原点O为圆心),过双曲线C上一点P(X.,Y.) 已知双曲线x^2/a^2-y^2/b^2与直线y=2x有焦点,则双曲线的离心率的取值范围是 已知双曲线x^2/a^2-y^2/b^2=1的一条渐近线方程为y=4/3x,则双曲线的离心率为? 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)和椭圆x^2/16+y^2/9有相同的焦点,双曲线的离心率是椭圆的两倍,求双曲线的方程 已知曲线X^2+Y+1=0与双曲线X^—Y^^(b>0)的渐近线相切,则此双曲线的焦距等于? 已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为 已知双曲线x^2/a^2-y^2/b^2的半焦距为c若b^2-4ac 已知双曲线x*/a*-y*/b*=1(a>根号2)的两条渐近线的夹角为60°,则双曲线的离心率为多少 如图,已知平行四边形ABOC,A(1,1)B(3,-2),点C在双曲线y=k/x (x 已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于AB两点,与双曲线的两支分别交于CD两点已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于A、B两点,与双曲线的两支分别交于C、D两点,求证 已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率等于√5,求双曲线方程 已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率等于√5,求双曲线方程【要过程】 已知双曲线X^2/a^2 - y^2/b^2=1的实轴长为2,焦距为4则该双曲线的渐近线方程是 【高中数学】已知双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0)的离心率为根号6/2,则双曲线的渐近线方程为?已知双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0)的离心率为根号6/2,则双曲线的渐近线方程为? 已知双曲线的一个焦点坐标F1(0,-13),双曲线上一点P到两焦点距离之差的绝对值为24,求双曲线方程已知圆x^2+y^2-4x-9=0与Y轴的两个交点A,B都在双曲线上,且A,B两点恰好把此双曲线两焦点间线段三等 已知双曲线x^2-y^2/3=1 过原点的直线L交双曲线于A B两点 求|AB|最小值