已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 06:15:52
已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2
xTIO@+stZY"$ JUj/A(X@B QiZpzΉ73N0ph=Tey(vq~.f4j oUqnǚmh5w3oLc^4R%F.Τp42 YM%۳Vleks.w kIK5gbFQaTp%])X,3)ircu4rc .,~讝YDghpri"ЫO ABD {Hk/0kp^b+dxP@kor<ȋew7ȗS\Á7n\{zk,(SpA^>K=ۯQIB̪uzSTD5p@*HO

已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2
已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,
两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.
(1) 求双曲线的离心率
(2)设AB被双曲线所截得线段长为4,求双曲线的方程
交于AB两点

已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2
(1)双曲线的渐近线方程为 y = (b/a)x ,y = -(b/a)x
由于直线AB垂直于L1,故直线AB的方程为:y = -(a/b)*(x - c)
这是因为两条垂直的平面直线其斜率的积是 -1.
将两条渐近线方程分别与直线AB的方程联立,求得A,B两点坐标
A((a^2)/c,ab/c) B((ca^2)/(a^2 - b^2),-abc/(a^2 - b^2))
已知向量OA、AB、OB的模成等差数列,故由直角三角形勾股定理的性质,不妨设:
OA = 3k AB = 4k OB = 5k 这里k等于某一非零正常数
固有:OA^2/OB^2 = 9/25,将A B的坐标代入,求得OA与OB,求得:
(a^2 + b^2)/(a^2 - b^2) = 5/3
整理得:离心率e = c/a = √5 / 2
(2) 由上问得到的结果,不妨再设:
a = 2m b = m c = √5m 这里m等于某一非零常数
因此双曲线方程可以写成:
x^2/4m^2 - y^2/m^2 = 1,再将直线AB的方程代入该式,经整理有:
15x^2 - 32√5x + 84m^2 = 0
x1 + x2 = m(32√5)/15 x1x2 = 84m/15
由于双曲线的弦长公式为:|x1 - x2|√(1 + k^2)
|x1 - x2| = √[(x1 + x2)^2 - 4x1x2]
将两根之和与两根之积的结果代入上式,得到:
弦长 = 4 = (4/3)m,m = 3
故双曲线方程为:x^2/36 - y^2/9 = 1

双曲线的中心为原点O,焦点在X轴上,两条渐近线为L1,L2,经过右焦点F垂直于L1的直线分别交L1,L2于A,...双曲线的中心为原点O,焦点在X轴上,两条渐近线为L1,L2,经过右焦点F垂直于L1的直线分别交L1,L2 双曲线的中心为原点O,焦点在x轴上,两条渐进线分别为L1,L2,经过右焦点F且垂直于L1的直线L分别交L1L2为...双曲线的中心为原点O,焦点在x轴上,两条渐进线分别为L1,L2,经过右焦点F且垂直于L1的直线 (1/3)双曲线的中心为原点O.焦点在X轴上,两条渐近线分别为L1.L2经过右焦点F做垂直于L1的直线分别交L1、L...(1/3)双曲线的中心为原点O.焦点在X轴上,两条渐近线分别为L1.L2经过右焦点F做垂直于L1的 已知双曲线的中心在原点,焦点在X轴上,过双曲线的右焦点且斜率为根号5/5的直线与双已知双曲线的中心在原点,焦点在X轴上,过双曲线的右焦点且斜率为根号5/5的直线与双曲线交于P,Q两点, 已知双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别在左右焦点,双曲线的右支上有一点P,已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△ 圆锥曲线:双曲线 的题已知双曲线中心在原点O,焦点在x轴上,两条渐近线分别为L1,L2,经过右焦点F垂直于L1的直线分别交L1L2于A,B两点,已知向量OA的绝对值,向量AB的绝对值,向量OB的绝对值 成等差 已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2 已知双曲线中心在原点O,焦点在X轴上,两条渐近线分别为L1 L2.经过右焦点F垂直于L1的直线分别交L1 L2于A,B两点,已知向量OA、AB、OB的模成等差数列、且向量BF与FA同向.(1) 求双曲线的离心率(2 已知双曲线的中心在原点,焦点在x轴上,离心率e=根号3,焦距为2又根号3,求该双曲线方程. 已知双曲线中心在原点,焦点在x轴上,a=3,经过点(9,-2根号2)求双曲线的方程是急用 已知双曲线的中心在原点,焦点在x轴上,离心率等于3,且过(-3,8)求双曲线的方程 双曲线的一个题 已知双曲线的中心在坐标原点o,焦点在x轴上,它的两条渐近线与一条准线相交于A、B两点,且三角形AOB是边长为2√3的正三角形,求双曲线的方程. 08年全国卷一理科数学解答题双曲线双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1、l2.经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点,已知OA、AB、OB成等差数列,且向量BF和向量FA 有关双曲线的问题 双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为L1,L2,经过右焦点F垂直于L1的直线分别交L1,L2于A、B两点,已知向量OA的模、向量AB的模、向量OB的模成等差数列,且向量BF与 已知双曲线的中心在原点,焦点在X轴上,离心率等于2.已知双曲线的中心在原点,焦点在X轴上,离心率等于2,过其右焦点且倾斜角为45度的直线被双曲线截得的弦MN的长为6.求此双曲线的方程. 已知双曲线的中心在原点,焦点x轴上,实轴长和虚轴长之和等于28,离心率为3/5,求双曲线的方程 双曲线的中心在原点,焦点在x轴上,两准线间距离为9/2,直线y=(x-4)/3与双曲线相交所得弦的中点的横坐标是双曲线的中心在原点,焦点在x轴上,两准线间距离为9/2,直线y=(x-4)/3与双曲线相交所 已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6求双曲线M的标准