做出函数Y=-3X+1的图象,观察图象,X取什么值时,Y大于0?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:29:40
做出函数Y=-3X+1的图象,观察图象,X取什么值时,Y大于0?
xXKoF+< وe'@S=2z&?Pe c$Nj[N8z!R).WmQ"3364t媜 | HeҾRs%)/fB@&IAfǏ  }$Y}~7X< ݕ/>@a<`{V_@8+•v =G8P$ֿ|Cl?EVWns3D=I/3 E2t@4J4͹ X_p5ΙC39{!Yς:g;CmϙYaKTkH(:)8 2-Poc{?CI 7cAs!mdY:_Os|P bw SgpC'U]樿=&c !e,;k9Ijݼ^33G,t,wx[{s.a>A|q eP {DB?X7&ӋpjF]'_0ua69ױʹ W y4jui R;ْ7ty?Td7p1z x<\WA++2龍O$PM$A/)7nJf*escŗ#3ٽSUCo(.gpDݗſ#K-PBY} J 7e!5`q&OO`˛HbK +u鰔FlUϨLĹ*!"Bxf-!ӽm&͉I: Ʋ59( &SDܧFScJxF*t(R8~|ij.q,S3XXj)E %ǔ.ҁh U#XS7< Y{O A&b$N,T4I\7~%9˲=1u!˨WMػ]. m?Hke7ݨ0otS+uj܇uD+T0X|8(40cZBRBۣQWٍƷߎ'~fѿݓ

做出函数Y=-3X+1的图象,观察图象,X取什么值时,Y大于0?
做出函数Y=-3X+1的图象,观察图象,X取什么值时,Y大于0?

做出函数Y=-3X+1的图象,观察图象,X取什么值时,Y大于0?
多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.
例2、分解因式a +4ab+4b (2003南通市中考题)
a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析:1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解.
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.
例7、分解因式2x -x -6x -x+2
2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ ,x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
例11、分解因式x +9x +23x+15
令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.
设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)