100分,答求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)的值答后再加14分!1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:26:19
100分,答求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)的值答后再加14分!1
xM 0ml'3]DPun"HckgF&0s9OiS\,dd+ێ6<ժ.39ɕ]2∁ a8A'_VO{ ÿ}EJE m%I @._@Gp5ؚl\ryyHy\̮al1"u a D̎

100分,答求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)的值答后再加14分!1
100分,答
求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)的值
答后再加14分!1

100分,答求1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)的值答后再加14分!1
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+.+100)
=1/1+1/(2*(2+1)/2)+...+1/(n*(n+1)/2)
=1/1+2(1/2-1/3+1/3-1/4+.+1/n-1/(n+1))
=1+2(1/2-1/(n+1))
=2-2/(n+1)
原式为n=100时的数值
即原式=2-2/101=200/101