高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:24:16
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧
xJ@W A)v7&$MԶ$ x*TADG!I۷p+=)a033 7f?ߏGa49_~ܨ/_(=9ՔxeyE=z-Juk+֔Q[MG6O"&;I>>xɡó9dY-?4dB^4 픿VeR2S^,2xJ)0ꋭ /@73hф~htS  KQ5Wucpa0Ӳ].&1 Ms҅aȑY $řʢ Ȑ $ hB(gL.H|Js h'J?n

高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧

高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧

高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧 计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=R和z=0所截部分的外侧.不用高斯公式. 高斯公式计算曲面积分 我用对坐标的曲面积分和高斯公式算出来的结果不同∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,我分别算了两种方法,答案不同,高斯方法算出来不是正确 第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之间的部分外侧.我想问的是这道题用分面投影法和用高斯公式做出的答案一样吗?书上用分面投影法得0,我自己用了 曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0 曲面积分 高斯公式 利用高斯公式计算下列曲面积分 高数 曲面积分 高斯公式 利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2) 的上侧 计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-y^2(z≥0)的上侧.-π 利用高斯公式 我解出的答案为0 高数斯托克斯公式问题.利用斯托克斯公式把曲面积分化为曲线积分,并计算积分值,其中A、S及n分别如下:A=(y-z)i+yzj-xzk,S为立方体0 曲面积分的题目,高斯公式 利用高斯公式求曲面积分 利用高斯公式求曲面积分 利用高斯公式求曲面积分, 利用高斯定理计算曲面积分 高数积分计算求曲面积分,格林公式,高斯公式之间的关联,有点小混乱~