已知抛物线y^=4x过点P(4,0)的直线与抛物线相交于A(X1,Y1)B(X2,Y2)则Y1^+Y2^的最小值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 11:47:58
xN@_Җ78^VZ
(PđKDAPK+0 t3όf@ߞe'X߱7lBV ʧam+qo?d^`dR*چBh%{rGܕ̷\UtWt;Ш(kUu#i+/+c.
@,PD
w"̒f6[kM@QqvXxW4ȍ{{Io䅃S^F%)94:cv#H'QC(3z :$x}>x#V!q<`Y2`
$d0I +| @۰3 O_T>7u
已知抛物线y^=4x过点P(4,0)的直线与抛物线相交于A(X1,Y1)B(X2,Y2)则Y1^+Y2^的最小值为
已知抛物线y^=4x过点P(4,0)的直线与抛物线相交于A(X1,Y1)B(X2,Y2)则Y1^+Y2^的最小值为
已知抛物线y^=4x过点P(4,0)的直线与抛物线相交于A(X1,Y1)B(X2,Y2)则Y1^+Y2^的最小值为
设直线方程为:y=k(x-4)
代入y^2=4x得:
y^2=4(y+4k)/k
y^2-4y/k-16=0
y1+y2=2/k,y1y2=-16
y1^2+y2^2=(y1+y2)^2-2y1y2
=4/k^2+32
显然k越大,y1^2+y2^2越小
当AB⊥x轴,时,k不存在
这时,y1^2+y2^2最小=32
设过(4,0)的直线为 y=k(x-4),
联立y^2=4x
得(k^2)x^2-(8k^2+4)x+4k^2=0
于是y1^2+y2^2=4x1+4x2=4(x1+x2)=4(8k^2+4)/k^2=4(8+4/k^2)
=32+8/k^2.
显然,当K→∞,8/k^2→0,即当AB所在的直线⊥OX轴时Y1^2+Y2^2最小值是32
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.1)求证:直线AB过定点(0、4);
已知抛物线y=-x²+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直l下方的抛物线上任取一点,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的
已知抛物线Y^2=4x的焦点为F,P(3,a)为抛物线上的一点,求|PF|的长,(2)过点F作倾斜角为30度的直线交抛物线...已知抛物线Y^2=4x的焦点为F,P(3,a)为抛物线上的一点,求|PF|的长,(2)过点F作倾斜角为30度的直
设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点设F为抛物线C:y^2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2根号3,则直
在平面直角坐标系xoy中 已知抛物线关于x轴对称,顶点在原点O且过点P(2,4) 则该抛物线的方程是y^2=8x 已知圆x^2+y^2-6x-7=0与抛物线y^2=2px(p>0)的方程是准线相切 则P=2
已知抛物线 y^2=4x上一点P到抛物线准线的距离为5,求过点P和原点的直线的斜率.
已知抛物线y^2=4x上一点P到该抛物线的准线距离为5,则过点P和原点直线的斜率为?
已知抛物线y^2=2x(p大于0),过点(1,0)作斜率为k的直线l交抛物线于A,B两点,A点关于x轴的对称点为C,...已知抛物线y^2=2x(p大于0),过点(1,0)作斜率为k的直线l交抛物线于A,B两点,A点关于x轴的对称点为C,直
已知抛物线y的平方=6x过点P(4,2)的弦被点P平分,求这条弦所在的直线的方程.
已知抛物线y的2次方=6x,过点p(4,2)的弦被点p平分,求这条弦所在直线方程
已知抛物线C1:x^2=y,圆C2:x^2+(y-4)^2的圆心为点M.已知点P是抛物线C1上的一点(异于原点),过点P作圆C2的两条切线,交抛物线C1与A.B两点,若过M.P两点的直线L垂直与AB,求直线L的方程?
已知抛物线y=4/1X+1的图像如图所示.(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴于点B.若三角形PAB是等边三角形,求点P的坐标.
已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,过点P作抛物线两条切线PA、PB,切点为A、B(1)若A、B、F三点共线,求证:点P在抛物线的准线L上;(2)对任意的点P,求证∠AFP=∠BFP
已知抛物线的对称轴为直线x=1,且顶点在直线y=2x+1上,过点P(0,4),求此抛物线解析式
已知抛物线y^2=4x,及点P(a,0),求抛物线上的点Q到P点的最近距离
点M(4,0)以点M为圆心、2为半径的圆与x轴交与点A,B,已知抛物线y=1/6x^2+bx+c过点A和B,与y轴交与点C点Q(8,m)在抛物线y=1/6x^2+bx+c上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值CE是过点C的
已知抛物线y=ax2+bx-4的图象与x轴相交于点A,B(点A在B的左边),与y轴相交于点C,抛物线过点A(-1,0)且OB=OC,P是线段BC上的一个动点,过P作直线PE⊥x轴于E,交抛物线于F.(1)求抛物线的解析式; (2)若
已知抛物线y=1/2x^2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛与抛物线对称轴交于点0’,过点B和P的直线L交Y轴于点C,连接O'C,将三角形ACO'沿O'C翻折后,点A落在点D的位置(1)求直