设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少存在一点a,使│f'''(a)│≥24.请问这题怎么做?谢谢了……
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 04:55:15
设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少存在一点a,使│f'''(a)│≥24.请问这题怎么做?谢谢了……
设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少存在一点a,使│f'''(a)│≥24.
请问这题怎么做?谢谢了……
设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少存在一点a,使│f'''(a)│≥24.请问这题怎么做?谢谢了……
在1/2处泰勒展开:
f(1) = f(1/2)+f’(1/2)*1/2+f’’(1/2)/2*(1/2)^2 +f’’’(t)/6*(1/2)^3
= f(1/2) + f’’(1/2)/8+f’’’(t)/48,
其中 1/2<t<1
类似,有:
f(0)= f(1/2) + f’’(1/2)/8-f’’’(s)/48,
其中 0<s<1/2
两式向减得:
2-1 = (f’’’(s)+f’’’(t))/48
f’’’(s)+f’’’(t)= 48
所以 2max{|f’’’(s)|,|f’’’(t)|}>=
|f’’’(s)|+|f’’’(t)|>=f’’’(s)+f’’’(t)= 48
==> max{|f’’’(s)|,|f’’’(t)|}>= 24
所以结论成立.
在1/2处泰勒展开:
f(1) = f(1/2)+f’(1/2)*1/2+f’’(1/2)/2*(1/2)^2 +f’’’(t)/6*(1/2)^3
= f(1/2) + f’’(1/2)/8+f’’’(t)/48,
其中 1/2<t<1
类似,有:
f(0)= f(1/2) + f’’(1/2)/8-f’’’(s)/48,
其中 0<s<1/2
全部展开
在1/2处泰勒展开:
f(1) = f(1/2)+f’(1/2)*1/2+f’’(1/2)/2*(1/2)^2 +f’’’(t)/6*(1/2)^3
= f(1/2) + f’’(1/2)/8+f’’’(t)/48,
其中 1/2<t<1
类似,有:
f(0)= f(1/2) + f’’(1/2)/8-f’’’(s)/48,
其中 0<s<1/2
两式向减得:
2-1 = (f’’’(s)+f’’’(t))/48
f’’’(s)+f’’’(t)= 48
所以 2max{|f’’’(s)|,|f’’’(t)|}>=
|f’’’(s)|+|f’’’(t)|>=f’’’(s)+f’’’(t)= 48
==> max{|f’’’(s)|,|f’’’(t)|}>= 24
所以结论成立。
收起