设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:21:04
设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积
x͒j@_7s'hO-x*i&J`[M/VГVdwWfA=f ۅ`Xm~T9JV!YNY oS4IoJƳp3lugI<[8g&N;s6#&OCIZW{Ы%\APUnkMU9Or#GƦKW{k2P J CCCr ^x{m^*eF8ڦh,c앝PS/N $x&4  k(, X 0ӚOҝM)M~o

设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积
设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积

设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积
y'=-e^(-x)
那么在M(t,e^-t)处的切线斜率是:k=y'|(x=t)=-e^(-t)
即切线方程是:y-e^(-t)=-e^(-t)*(x-t)
即:y=-e^(-t)*x+e^(-t)+te^(-t)
x=0时,y=e^(-t)+te^(-t)
y=0时,x=1+t
面积S=1/2*|1+t|*|e^(-t)+te^(-t)|=1/2e^(-t)*(1+t)^2
S'=-1/2e^(-t)(1+t)^2+1/2e^(-t)*2(1+t)
令s'=0,则化简有:-(1+t)^2+2(1+t)=0
(1+t)(-1-t+2)=0
(1+t)(1-t)=0
t=-1
t=1

设曲线y=e-x(x≥0)在点M(t,e-t)处的切线l与x轴y轴所围成的三角形面积为S(t). 设曲线y=e^(-x)(x≥0)在点M(t,e^(-x))处切线l与x轴与y轴所围成的三角形面积S(t)设曲线y=e^(-x)(x≥0)在点M (t,e^(-x))处切线l与x轴与y轴所围成的三角形面积为S(t).(1):求 设曲线y=e^-x在点M(t,e^-t)处的切线L与x轴y轴所围成的三角形面积为s 求切线的方程和s的最大面积 高二数学导数:设曲线y=e^(-x)(x≥0)在点M(t,e^(-x))处切线l与x轴与y轴所围成的三角形面积S(t)设曲线y=e^(-x)(x≥0)在点M (t,e^(-x))处切线l与x轴与y轴所围成的三角形面积为S e负x次幂*x+y-e负x次幂*(t+1)=0令x=0 ∴y=e负x次幂>0 why?设曲线y=eˆ(-x) (x≥0)在点M(t,eˆ(-x))处的切线L与x,y轴所为城的三角形面积为S(t)(1) 球切线L的方程(2) 求S(t)的最大值 设曲线y=e-x(x≥0)在点M(t,e-t)处的切线l与x轴y轴所围成的三角形面积为S(t).(1)求切线l的方程(2)求S(t)的最大值. 曲线曲线x=e^2t.y=2t z=-e^(-3t)在对应于t=0处的切线方程为 高数题:曲线{x=e的t次方×sin2t,y=e的t次方×cost} 在点(0,1)处的法线方程是 曲线 X=e^t sin2t Y=e^t cost 在点(0 1)处的法线方程是 ---------------------------------- 求曲线的长度s,设曲线方程为:x=e^(-t)cost,y=e^(-t)sint,z=e^(-t) (0 空间曲线切线及法平面若空间曲线的参数方程为x=a(t),y=b(t),z=c(t),t属于[d,e],三个函数都在[d,e]上可导,且三个导数不同时为零.现在要求曲线在其上的一点M(xo,yo,zo)处的切线及法平面方程.设与点m 若圆C过点M(0,1)且与直线l:y=-1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点.点P(0,t)(t>0),且满足AB向量=λPB向量(λ>1)(1)求曲线E方程(这我会,x^2=4y)(2)第二问是:若t=6,直线AB 4道“大学多元函数微积分”试题!1.求倒数或偏导数.设x=e^u+usinv,y=e^u-ucosv,求(偏u/偏x),(偏u/偏y),(偏v/偏x),(偏v/偏y)[e^u代表e的u次方,下同]2.求曲线x=t/(1+t),y=(t+1)/t,z=t^2在对应于t=1的点的切线及法平 设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=e(1+4e^2)^-3/2我算了好几遍了答案都是3e(1+4e^2)^-3/2……不知道那个地方不对……求高人详解……谢谢……我是在文 设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=e(1+4e^2)^-3/2我算了好几遍了答案都是3e(1+4e^2)^-3/2……不知道那个地方不对……求高人详解……谢谢……我是在文 求曲线参数的切线方程求曲线x=2e^t y=-e^t在t=0对应处的方程 1.设f(x)=x^2,φ(x)>0,f(φ(x))=e^2x,则φ(x)=2.函数f(x)=(x^3)+2x在区间【0,1】上满足拉格朗日值定理的点ζ是3.曲线x=(e^t)sin2ty=(e^t)cost在对应t=0处的切线方程为 求曲线x=sint+t,y=cost,z=e^t-1 在点(0 1 0)处的切线方程与法平面方程