求y=1/sinx+1/cosx+1/(sinxcosx)的最小值 x∈(0,∏/3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:39:50
求y=1/sinx+1/cosx+1/(sinxcosx)的最小值 x∈(0,∏/3)
x){P83BP?9Di Y-4f+XM|6Ɏ%O?_t z@d|ڿBml @a

求y=1/sinx+1/cosx+1/(sinxcosx)的最小值 x∈(0,∏/3)
求y=1/sinx+1/cosx+1/(sinxcosx)的最小值 x∈(0,∏/3)

求y=1/sinx+1/cosx+1/(sinxcosx)的最小值 x∈(0,∏/3)
因为 2/(1/sinx+1/cosx)<=√((sinx^2+cosx^2)/2)=√0.5
所以 1/sinx+1/cosx>=2√2 当且仅当 x=∏/4时成立
又因为 1/(sinxcosx>=1/((sinx^2+cosx^2)/2)=2 当且仅当x=x=∏/4时成立
故两式可在x=∏/4时同时取到等号
所以 y=1/sinx+1/cosx+1/(sinxcosx)>=2+2√2