人教版 概念 (上册)2010年

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:34:46
人教版 概念 (上册)2010年
x]KSɲ+9f gf3?a">gĄq.e@ B`< xx!!G\%խ{N8酭|UVVfVï?VJ%wUu";PoC۞H|4o39dĨ)80cOq﮿#QYph'vdhU'uc!1/S Ck =#wV'7DI^l En,=$de ꭿXkhrihx۴G1|had§MP Nl\^LJ"[K{d8n < ں_򣎀 DN,h$@X]v$u(~9-aud8wsX)Q%H^XX ut܋ c.©:xU{"@W-f}0'CSTW.(b.KG@p̍!D\ڐF(rvl@$X ``!b4N-i+w/#lcަ{GaJDl q1fƩ۷O+4M+V,6I,j.4|h?0N֩솁@ɇPޚR뺅@E#f?Ayv:O&,W,a\̄ I7>6t6ņsotAZpL;gL@eeb1pf`BË{I5hDt{2D XFaIU6"FRLJ$bCMBҒWN(oWJ+%1d(Le0a=BG.HXlhD`k@$c=NH,O\s(q`쨰V)k{>ֺ)|)ύ>pJ,k2U ]HbH]&]x,UؑYlQ6"vCSz^QÍl0lcn&YY1}0F$vB!e^/ә23v;h901]243_!6̌#Y'`? 3 nyBD%Y]N8D$+,Ӥ?'8%/ ~Y25q19~ZYb5)F #zq2fDKahݿs)QG4!GDyCq ]=qo޾8GxE}\V0j,-?Jfg4Wie41k}|t9Ξ_Ntۣl pK{EO*!yFj]kV:8䁒@.SRT=$<R,(PhK5nR0û@l4個cnb*CLP1zcbM&tF!ѷDqάyڕ03ɕ;_e ۂ7%Xy.mT++lVD-(EN*S=r!1Ǥ61_ͪ)Ny*LlT~ThJ#ܺccmYw:@EDMx/m[0S_|R%dm$mxu^IJ% tI^-lêe#=}BQ֡]")Ȧ7lWH)ZHiucfr:mrXNι21o0B)sDVlmRoxxF!#ĒSaLU U:zJ69% r8 d'Q@(wF xC/wě2Zd,O Nd{2B#eYt71Oׅg4XǢ+"CopD;\` 2*; @Ƨ4\p,p?3i7 87*Fjb Xa=D`Myk|:OtxGi7t@G!Ǔ١)k'ag _ؐ)_TG\4nVH sȿ0Xx 7/Yip~F'#}ye3Pu5~:N*CR u{*w}}]=˜AB<֡T.o=~/~`2?=Iw@ o ÒOg%{B ߠsHP]'C?,# YyV$e432Q=9vY:4UD =}ȰuC}7Ǣu4 Cx4 :Kct(4uŻ)HI-s!vuFlu[Ot֖A t) kM]eLeB, %bt Nȕlw՞XFH Zi.tyR:{ gn& $ Js!Brl[ڐta9FgSrߍ"}4%V#]Ce=R0 I}רI$b‘&l72 oUe7v}^eBt,AFeD N,N{+ҷ5 ͪ]zdY j]]IUJ:B+GG5l4X%c*n'/UBA+w˝yg!CBJD&&x/YL+ g 4EBe&C|I} i(W!U 4!? ;M&Q_{E0u Ϧש'Zk]ARS6:ڠC#|%B)9BZaZ u62EC(#F`ďRp3;[x ^Z)95^-M2{W+LoS `MAƣ3~oHeHx]HVH(r믒 ̺~d.lxQP|~dHZ+7fgnOa]y]=%-5j$Ʃ-թuWK |s߉p1ɓ IEgb?QJݐ[qW rLz% y43S.Az˼K/Ǥ^ i%<xc zTA?ۋ:N4Ն\!StSPFc343I'g{7x-y]gl<ϱ3>CR>|Z{бBϪ<+8YtΣ(&l?!4!OH&$N(}oܞ֜:ˎO@yjDGJD;աٮ+A?gl'kx^?\eMU\Rky .EVpRli=viUoZ t6wVghu"/׶o]_jZ psZpE׭^M1^Y9WNkVU]]am}7QtŠ[z`% V`% V`N Ehc]\pElQ+UU ƅ]N$vxoZ>Ӯ,oWD+q.VEVxQ){JV3q9lUA˷)9w(ki75yƂvEno~]ף;/kjmE^ؼKY.; E4VV%y kUuyYw*η) X3]I.E/y! 襼|ӢOU|ϼGw=Y W_^'g?ڠ+x]TPbχuCC}7y>}WyX!c3ڦ3']!{0nHަ%y;q|7Ocku}m'~ycJ>>.f}=I`Aп_^Օ69 W27ʒlW!ï7&0duWE{O ԌVBC.Yeb#ȽGWǢf6]*Wnluʧ7O-))ЭK`B x3-1E_mae-:{ ar8q%V~gk2[Q d(箦r];;gJ1=8<>blGB=`zz65

人教版 概念 (上册)2010年
人教版 概念 (上册)2010年

人教版 概念 (上册)2010年
1单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数.
2一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
3整式的加减法,实质就是将整式中的同类项合并,如果有括号应先去括号,再合并同类项.
4同底数幂相除,底数不变,指数相减.
二平行线与相交线
余角和补角定律1如果两个角的和是直角,称这两个角互为余角.如果两个角的和是直角,称这两个角互为补角.
三生活中的数据
1有效数字对于一个近似数,从左边起第一个不是零的数起,到精确到的数位止,所有的数字叫这个数的有效数字.
2平行线像这样的,不会相交的两条直线,就是互相平行的两条直线,简称平行线.4四边形两组对边平.
3统计图1条形统计图条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些纸条按一定的顺序排列起来.从条形统计图中很容易看出各种数量的多少.
条形统计图分为单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据.
2折线统计图折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化.折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况.折线统计图分单式或复式
3扇形统计图扇形统计图是用整个圆表示总数用圆内各个扇形
的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.用整个圆的面积表示总数,用圆的扇形面积表示各部分占总数的百分数.作用能清楚地反映书各部分数同总数之间的关系.扇形面积与其对应的圆心角的关系是扇形面积越大,圆心角的度数越大.扇形面积越小,圆心角的度数越校扇形所对圆心角的度数与百分比的关系是圆心角的度数=百分比360度扇形统计图还可以画成圆柱形的.
四三角形
三角形一公有三种,锐角三角形并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形.直角三角形有一个角为90度的三角形,就是直角三角形.钝角三角形有一个角是钝角的三角形叫钝角三角形.任意一个三角形,最多有三个锐角;最多有一个钝角;最多有一个直角.
一个三角形有三条中线,并且都在三角形的内部,相交于一点.三角形的中线是一条线段.

第一章 丰富的图形世界
1. 棱柱有直棱柱和斜棱柱。
2. 图形是由点、线、面构成的。
3. 面与面相交得到线,线与线相交得到点。
4. 点动成线,线动成面,面动成体。
5. 在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。棱柱的上、下底面的形状相同,侧面的形状都是长方形。
6. 用一个平面去截...

全部展开

第一章 丰富的图形世界
1. 棱柱有直棱柱和斜棱柱。
2. 图形是由点、线、面构成的。
3. 面与面相交得到线,线与线相交得到点。
4. 点动成线,线动成面,面动成体。
5. 在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。棱柱的上、下底面的形状相同,侧面的形状都是长方形。
6. 用一个平面去截一个长方体,截出的面叫做截面。
7. 把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
8. 平面图形是由一些不在同一条直线上的线段一次首尾相连组成的封闭图形。
9. 有一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算
1.有理数:整数 正数、0、负数 ;无理数:分数 正数、负数
2. 比0高的数,叫做正数,用符号+(读作:正)来表示。
3. 比0低的数,叫做负数,用符号-(读作:负)来表示。
4. 0既不是正数,也不是负数。
5. 画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
6. 任何一个有理数都可以用数轴上的一个点来表示。
7. 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。0的相反数是0。
8. 数轴上两个点表示的数,右边的总比左边的大。
9. 正数大于0,负数小于0,正数大于负数。
10. 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
11. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
12. 两个负数比较大小,绝对值大的反而小。
13. 同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
14. 减去一个数,等于加上这个数的相反数。
15. 两数相乘,同号的正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
16. 乘积为1的两个有理数互为倒数。
17. 两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0数都得0。0不能作除数。
18. 除以一个数等于乘以这个数的倒数。
19. 求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。
20. 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
第三章 字母表示数
1. 用运算符号连接的数或表示数的字母的式子叫做代数式,单独一个数或一个字母也是代数式。
2. 字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。
3. 在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4. 括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
第四章 平面图形及其位置关系
1. 线段有两个端点;将线段向一个方向无限延长就形成了射线,射线有一个端点;将线段向两个方向无限延长就形成了直线,直线没有端点。
2. 经过两点有且有一条直线。
3. 两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。
4. 角是具有公共端点的两条射线组成的图形,两条射线的公共端点是这个角的顶点。
5. 角也可以看成是由一条射线围着它的端点旋转而成的。
6. 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
7. 我们通常用“‖”表示平行。经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线互相平行;两条直线相交,只有一个交点。
8. 我们通常用“⊥”。平面内,过一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短。
9. 如果两条直线相交成直角,那么这两条直线互相垂直。
10. 互相垂直的两条直线的交点叫做垂足。
第五章 一元一次方程
1. 在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
2. 等式两边同时加上(或减去)同一个代数式,所的结果仍是等式。
3. 等式两边同时乘同一个数(或除以同一个不为0的数),所的结果仍是等式。
第六章 生活中的数据
1. 利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
2. 在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比。
3. 扇形统计图能清楚地表示出各部分在总体中所占的百分比。
4. 条形统计图能清楚地表示出每个项目的具体数目。
5. 折线统计图能清楚地反映事物的变化情况。
第七章 可能性
1. 生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。必然事件与不可能事件都是确定的。
2. 也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件。不确定事件发生的可能性是由大小的。

收起

倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
单价×数量=总价 总价÷单价=数量 总价÷数量=单价
工作效率×工作时间=总量 总量÷工作效率=工作时间 总量÷工作时间=工作效率
加数+加数=和 和-一个加数=另一个加数
被减数-减数=差 被减数-差=减数 差+减数=被减数

全部展开

倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
单价×数量=总价 总价÷单价=数量 总价÷数量=单价
工作效率×工作时间=总量 总量÷工作效率=工作时间 总量÷工作时间=工作效率
加数+加数=和 和-一个加数=另一个加数
被减数-减数=差 被减数-差=减数 差+减数=被减数
因数×因数=积 积÷一个因数=另一个因数
被除数÷除数=商 被除数÷商=除数 商×除数=被除数
图形计算公式
1、正方形:
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体:
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形:
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体:
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5、三角形
面积=底×高÷2 S=ah÷2
三角形高=面积 ×2÷底 h=S×2÷a
三角形底=面积 ×2÷高 a=S×2÷h
6、平行四边形
面积=底×高 S=ah
7、梯形
面积=(上底+下底)×高÷2 S=(a+b)× h÷2
8、圆形
周长=直径×π=2×π×半径 C=3.14×d=2×r
面积=半径×半径×π S=r×r×3.14
9、圆柱体
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体
体积=底面积×高÷3
1、和差问题的公式:
(和+差)÷2=大数 (和-差)÷2=小数
2、和倍问题:
和÷(倍数-1)=小数 小数×倍数=大数 (和-小数=大数)
3、差倍问题:
差÷(倍数-1)=小数 小数×倍数=大数 (小数+差=大数)
1、植树问题:
非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
2、盈亏问题:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
3、相遇问题:
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
4、追及问题:
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
5、流水问题:
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
5、浓度问题:
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
6、利润与折扣问题:
利润=售出价-成本 涨跌金额=本金×涨跌百分比
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
回答者: 冰封的心007 - 试用期 一级 4-5 13:54
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒

收起

1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总...

全部展开

1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
第一章 丰富的图形世界
1. 棱柱有直棱柱和斜棱柱。
2. 图形是由点、线、面构成的。
3. 面与面相交得到线,线与线相交得到点。
4. 点动成线,线动成面,面动成体。
5. 在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等。棱柱的上、下底面的形状相同,侧面的形状都是长方形。
6. 用一个平面去截一个长方体,截出的面叫做截面。
7. 把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
8. 平面图形是由一些不在同一条直线上的线段一次首尾相连组成的封闭图形。
9. 有一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算
1.有理数:整数 正数、0、负数 ;无理数:分数 正数、负数
2. 比0高的数,叫做正数,用符号+(读作:正)来表示。
3. 比0低的数,叫做负数,用符号-(读作:负)来表示。
4. 0既不是正数,也不是负数。
5. 画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
6. 任何一个有理数都可以用数轴上的一个点来表示。
7. 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。0的相反数是0。
8. 数轴上两个点表示的数,右边的总比左边的大。
9. 正数大于0,负数小于0,正数大于负数。
10. 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
11. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
12. 两个负数比较大小,绝对值大的反而小。
13. 同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
14. 减去一个数,等于加上这个数的相反数。
15. 两数相乘,同号的正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
16. 乘积为1的两个有理数互为倒数。
17. 两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0数都得0。0不能作除数。
18. 除以一个数等于乘以这个数的倒数。
19. 求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数。
20. 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
第三章 字母表示数
1. 用运算符号连接的数或表示数的字母的式子叫做代数式,单独一个数或一个字母也是代数式。
2. 字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。
3. 在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4. 括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
第四章 平面图形及其位置关系
1. 线段有两个端点;将线段向一个方向无限延长就形成了射线,射线有一个端点;将线段向两个方向无限延长就形成了直线,直线没有端点。
2. 经过两点有且有一条直线。
3. 两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。
4. 角是具有公共端点的两条射线组成的图形,两条射线的公共端点是这个角的顶点。
5. 角也可以看成是由一条射线围着它的端点旋转而成的。
6. 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
7. 我们通常用“‖”表示平行。经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线互相平行;两条直线相交,只有一个交点。
8. 我们通常用“⊥”。平面内,过一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短。
9. 如果两条直线相交成直角,那么这两条直线互相垂直。
10. 互相垂直的两条直线的交点叫做垂足。
第五章 一元一次方程
1. 在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
2. 等式两边同时加上(或减去)同一个代数式,所的结果仍是等式。
3. 等式两边同时乘同一个数(或除以同一个不为0的数),所的结果仍是等式。
第六章 生活中的数据
1. 利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
2. 在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比。
3. 扇形统计图能清楚地表示出各部分在总体中所占的百分比。
4. 条形统计图能清楚地表示出每个项目的具体数目。
5. 折线统计图能清楚地反映事物的变化情况。
第七章 可能性
1. 生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。必然事件与不可能事件都是确定的。
2. 也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件。不确定事件发生的可能性是由大小的。

收起