数学小论文小学五年级的!~急!`~~~~最好是生活中的数学之类的.!大概350字以上.拜托了!大家帮帮忙吧!好的加分!~有关奥数的!!!怎么搞的呀

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:31:38
数学小论文小学五年级的!~急!`~~~~最好是生活中的数学之类的.!大概350字以上.拜托了!大家帮帮忙吧!好的加分!~有关奥数的!!!怎么搞的呀
x\[su+7"Krm<)/yq[޲*~r @A(B$43󤿐i('O>>LnEG^w,+)|Wg)Fw|*~7?w_7wo{߿7__}_/?}o?ogyu :)17&~l۷DFj9</EiK^a%A3E&-x6AaGtpM"c[ `xÊ,z!j" *#1;/ @ݦ3Ĵ ҰsqC{wQoflͬy6 J!!jWP<|U]* i?-{So?:$їGά t^bsVkY͝dz(h<='ZAȋۻtϓ=]sQ<4XvKla42s EowˢXN7Kn- [2mҺ;<,ʉ.efK$ =SP^ztae{}ё3xݾm)/GWڕ23,b[yb6lq[ s 7[kR (TqI"xl:C|,tf[aH4Z{P0 ѻiλ9ǝa uOij;:\2H{($ESz~< Qkv}(W=*3KeòQ``#_ס#c썜q?t`yo|,.nϱ3)ž8ĩ`>/ ~ 8Gim>#Irx"$ՙ<ۂqc @-2>мc5(E®VS.UEYk"?pϏev@:ݗ#*#y!ԝ\y}Ǣ-Rqꈰ65iKR5l+?U$j`^gC,Ut bi_H9K;ҋҚ$yׯHd^Wf^YqXQa3AC@QІw˜Z["O@3 p'Uk&d{WBq !53_٥{+kRC* 0,൐{ Sifvȭa>-gl Zyy6>*;NGԲU)Rհqz>p&-,K$YP\r&qsid%mJw;FX eLaTNͲ: z/ =QM^dƮ v;Bk(HҬk/L*f暙BvDSPi5` uƝUs^M̺>]1ѐ$3nXx=8.+ 0/d`Og @M` v3/C0~ yro¾N TJ r%.LkZ(0+_ Qug!("dDHE] #nJ^L 7 Eu:"nE1>C%LKb!_6CDLɅ8NrUeYÐWD@~ u"YGl Pe- #1T%&3"SE0ަ3c(%ifB_ftK\rr#%1HqQz7b62)wx ([ 690oU-[k1$2~QUޘ|u l=\2{S~~zGOoc0"~l& p@.%o(PFF1PY'X $<m%Q_ߔZJPFZ%-ML4ޔ&y2B(8WKIވ芪#A[IUћ2$^RzC`go"mU %EQR%߃R VʨtbdѻcxS+Wvn->my1!wc@PMiO7SIؤNlv9/hq.Xe&#}:z[ԊMOZ[:G86wL?ŲL@q=bl"צhgQPI!?ܩ J=\Qƞ.粨#є0IU>c{@˲ZTEJu)SF$Rݾ7ъ(Dԕ9bFPD\cvVTn#H[)QMd*{ ({}jV\{)qJ(RSC55o|#Nt\"!\dVGUEREΚ_!t?q/>h7u[s&3 tPԪp3WtR)Up#wӂnBЍZr^zp Ȣi"}{G3BifIRHFyMJ<.D);s2g(RM{ϥGbK.8,x k/܍xnΙHYCcc2dUQ>I P RMͶVrAx2>Qus׈Hg!sSȢH ~KQҪ!xW@VN$v-0<+'C֭xilm'څ?dzWXجm[Rsr!M ^Cx1&jG׏v!d{o$tf(3\4Cޏq ^y믘Iq%u",$7w<ɜ^6/5?@:T Š۵r#)<,HcGaD_̥#6ϳd ?M [}rO)z<)#Ysu T&&6?ߦ'}>9'9x܀ s圀Nk(ȍD@qqe*%N[/7[-\_JdL~ +|[ fܜ> Civ^C 7-(1 >Xv`SCw&$)L$Tq[MF.Bœ{E}dj}.׫4MI>1&2(X [iy7+|^WMRbLiQ^SeJR L.踁F̡5 MJ6;歂`HdÎ=13j) GD՜RǞ b= c:$[C 3?\^g4z/1.!.9'sє1au ͣ[hcP֏`4oyql>ct+a@7NyЫW*i'<>|Vz_âU  QIr4j6@O??֫=ԫUc?y>2+XۿyVqvZXc޴ 9j׭]->$y\d^*9pI*=EPOU׀1! L'/Jq)p-2ܬVUj^k]4/I [f_ 9m~_k>褿;{քt޼x>|D_c`Ñz_tΨϯkƹ{p:zaM/T)=Y|!zt$[#@jLedMoFa0m~-2 X.`E XVt+].`E XVt+].`E XVt+].`]%

数学小论文小学五年级的!~急!`~~~~最好是生活中的数学之类的.!大概350字以上.拜托了!大家帮帮忙吧!好的加分!~有关奥数的!!!怎么搞的呀
数学小论文小学五年级的!~急!`~~~~最好是生活中的数学之类的.!大概350字以上.拜托了!大家帮帮忙吧!好的加分!~
有关奥数的!!!怎么搞的呀

数学小论文小学五年级的!~急!`~~~~最好是生活中的数学之类的.!大概350字以上.拜托了!大家帮帮忙吧!好的加分!~有关奥数的!!!怎么搞的呀
http://blog.xxt.cn/showSingleArticle.action?artId=981284

波妇开骂——狗血喷头
狗咬吕洞宾——不识好人心。
狗打喷涕——明儿天阴。
狗带宫帽——仗势欺人
狗背上帖膏药—毛病
狗不吃屎—糊弄人
狗不嫌家穷—友情为重
狗不理的包子—愿买愿卖
狗打哈欠—出出臭气
狗戴嚼子—胡勒
狗戴礼帽—装大人物
狗等骨头—干着急
狗黑子叫门—熊到家了
狗见了主人—摇头摆...

全部展开

波妇开骂——狗血喷头
狗咬吕洞宾——不识好人心。
狗打喷涕——明儿天阴。
狗带宫帽——仗势欺人
狗背上帖膏药—毛病
狗不吃屎—糊弄人
狗不嫌家穷—友情为重
狗不理的包子—愿买愿卖
狗打哈欠—出出臭气
狗戴嚼子—胡勒
狗戴礼帽—装大人物
狗等骨头—干着急
狗黑子叫门—熊到家了
狗见了主人—摇头摆尾
狗撵鸭子—呱呱叫
狗逮耗子—多管闲事
狗肉丸子—不上席
狗头军师—尽出歪主意
狗掀门帘—靠一张臭嘴
狗尾巴—越翘越高
狗熊拉犁耙—不听那一套
狗熊掰棒子—最后剩一个
狗熊骑自行车—瞧你那腿
狗咬狗—一嘴毛
狗咬刺猬—插不进嘴
狗咬乌龟—找不到头
狗咬吕洞宾—不识好人心
狗钻篱笆—找突破口
狗坐轿子—不识抬举
狗对茅坑发誓—无用
狗守厕所—定有所图
狗嘴里塞骨头—投其所好
谗狗等骨头—急不

收起

此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。
数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了...

全部展开

此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。
数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。
数字与符号的起源与发展
一、数的出现

很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。
二、符号的出现
加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简
单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。
1、加号(+)和减号(-)
加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。
2、乘号(×、·)
乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。
3、除号(÷)
除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。
4、等号(=)
等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。

收起

数学发展史
此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。
数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从...

全部展开

数学发展史
此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。
数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。
数字与符号的起源与发展
一、数的出现

很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。
二、符号的出现
加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简
单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。
1、加号(+)和减号(-)
加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。
2、乘号(×、·)
乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。
3、除号(÷)
除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。
4、等号(=)
等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。
分数
一、分数的产生与定义
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :
①分母和分子中不能有0,否则无意义。
②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
二、分数的历史与演变
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。
在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。
公元前1850年左右的埃及算学文献中,也开始使用分数。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数.
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的.
最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法.
在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。

收起

太多了,
谈谈计算教学的改革
小学数学数与计算教学的回顾与思考
小学数学教材结构的研究与探讨
小学数学应用题的研究(一)
改进教学方法培养创新技能
21世纪我国小学数学教育改革展望
面向21世纪的小学数学课程改革与发展
不拘一格育“鸣凤”
使学生真正成为学习的主人
改革课堂教学的着力点
谈...

全部展开

太多了,
谈谈计算教学的改革
小学数学数与计算教学的回顾与思考
小学数学教材结构的研究与探讨
小学数学应用题的研究(一)
改进教学方法培养创新技能
21世纪我国小学数学教育改革展望
面向21世纪的小学数学课程改革与发展
不拘一格育“鸣凤”
使学生真正成为学习的主人
改革课堂教学的着力点
谈素质教育在小学数学教学中的实施
素质教育与小学数学教育改革
浅谈学生数学思维能力的培养
浅议表象积累与培养学生的思维能力
也谈学生创新意识培养
实施创新教学策略 培养学生创新意识
10以内加法整理和复习
改良“有余数除法计算”教法
给学生创新的时间和空间

收起

专题分析:
在日常生活中,有一些现象按照一定的规律不断重复出现。如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解决。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定...

全部展开

专题分析:
在日常生活中,有一些现象按照一定的规律不断重复出现。如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解决。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。
练习题:
1、2003年3月19日是星期三,问8月1日是星期几?
2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?
3、1996年8月1日是星期四,问1996年的元旦是星期几?
4、如果公元3年是猪年,那么公元2000年是什么年?
5、如果公元2001年是蛇年,那么公元2年是什么年?
6、如果公元6年是虎年,那么公元21世纪的第一个虎年是哪一年?
7、有一列数,1、4、2、8、5、7、1、4、2、8、5、7 ……第58个数是多少?这58个数相加的和是多少?
8、有一列数,5、6、2、4、5、6、2、4 ……第128个数是多少?这128个数相加的和是多少?
9、
A B C A B C A B C A B ……
万 事 如 意 万 事 如 意 万 事 如 ……
上表中每一列两个符号组成一组,如第一组“A万”,第二组“B事”……问第二十组是什么?
10、课外活动上,有4个同学在进行报数游戏,他们围成一圈,甲报“1”、乙报“2”、丙报“3”、丁报“4”,每人报的数总比前一个人多1,问45是谁报的?
11、小红买了一本童话书,每两页之间有3页插图,也就是说3页前后各有1页文字,如果这本书有128页,而第一页是文字,这本书共有插图多少页?
12、校门口摆了一排花,每两排菊花之间摆了3盆月季花。共摆了112盆花,如果第一盆是菊花,那么共摆了多少盆月季花?
13、同学们做早操,36个同学排成一列,每两个女生中间是两个男生,如果第一个是女生,这列队伍共有多少男生?
14、一个圆形花圃周围长30米,沿周围每隔3米插一面红旗,每两面红旗之间插两面黄旗。花圃周围共插了多少面黄旗?
15、河岸上种了1000棵树,第一棵是蟠桃,再后面两棵是水蜜桃,再后面三棵是大青桃。接下来总是一棵蟠桃,两棵水蜜桃,三棵大青桃这样种下去。问第100棵是什么桃树?三种树各有多少棵?

收起

数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意...

全部展开

数的出现
一、数的概念出现
人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。
数字与符号的起源与发展
一、数的出现

很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。
而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。
二、符号的出现
加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简
单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。
1、加号(+)和减号(-)
加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。
2、乘号(×、·)
乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。
3、除号(÷)
除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。
4、等号(=)
等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。
分数
一、分数的产生与定义
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。
分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :
①分母和分子中不能有0,否则无意义。
②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
二、分数的历史与演变
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。
在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。
公元前1850年左右的埃及算学文献中,也开始使用分数。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数.
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的.
最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法。
在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。

收起