初一年级数学题奥数的,初一,中等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 00:46:23
初一年级数学题奥数的,初一,中等
x}O[I◖66ZK0=#KόFy:jdZ#B-$\l Rۗ U1|sN7aUVZnog+]Yݳ_4=76ATwTk۹H:~uGZ]Z?+cDǐmBmgo>qޥ 13h,Im`=Ѓ}1n?ΝTʏwk3oo߮j,?US $W־;}0QV]^>K#Օ}m/gtxH]<UKOy$˵Q]{;gg>t)B]觊O~6E4|*ea󸽴vqXGT߾}Gub)<͛hsPv&hfH$B40l/JWJCD%R1y[qo'](%"nQ_۪+E'Dm 2S1{NCW3WU]'!wPG4Ro?IVAxRF+?sv~Py*Q=٫tRQ?_bT8Wߜϸֻ}M t;.pKFC$Zi<$*h)t'Rޛ0VA `==ЂpZ}W}\engzԪ`rxCn#KKB4nw~FGՕ){v~4Qć= dP-7̴[UIEqrGatU_iӸM5n  bYe.=h47u0,_^9~饗Pru#Lbde[7ajF2F*#JsC=v#j%7fgؠSG4n1(Ə8s1~wgv(g:k3+b8wC~ cyWO87tE+)f2}H3!NzfҝƝv:{ѢxitRI ֒h;yaO}=ްRrVۙot'F30O Mi+6g2g1a>a>RaH/SV^)]jad)* Pq}3g³_5u1k~f8لvpgamme> is'qߟ&)叅`m*vڛO#ժm|v f:dbP[X:e418 x~ҰaIUmTfȨL &u_9.JS7cFԭR_I'ѻR1::|wRR %U}U{X~U+=[ ~v4PczF7FҒ!E VeqQTNI`S mOW4/HbԖ"[4w!,jy!-IiJ]~)w/qj&DJLf5=Զsʆ\,*'PN0D*y.k\xWjmk .2/ dJhyDm[y4a]t$.WF5WL劮k]w%W4W"-lr<Dvt*/aȟBߊ_6/?@ݾyҦ^tv]-T(ᗪ酐)͐V]j]ɨ[tdeum# iuy>|.FjP]ڪ-wa$mb`F"bgR.GNmfK$A6W js{e2$ H[ީgOBu'3H" 8U TI Xy[9Yӎn̿/7ŧ()ucR*xkEꭞ}Ef(q"ʼnC\PP?Z(yOuL鑽6nF">r >!PH_ϧ0b~hE//Nv>1$zюh#3!5n1FI楚b|qB,9F'% P[6BV/Ԉ-":4iIfVFG}L 1f)[{)S1TprUЧdQ"O=Zy_:eN7;3;p93١dI5CvD$a̗V !dRFXa?Jw :2Ѥnگ['f~2b@* tK{ꡞR{'W-L98]=RcFBl;~.Jl .愲-^^Nk.bCM/{R"CcotRpga⎴_d4|d>6N]P"P)Nxμ!` `^,V/8?Va! F&]eu2 joPcg%ʺ8C_u錦h#t4hǑ xAtXtÁML?0q̤hKE?17''I?]&Й34b&xN8QiD)iOL>ggad >UG ع.7i&dfHKLdOtMZq?G5%f U1]6Z5LLb^Ŵ͛2$N&Lt2~#)=޿33ݲ 5[96܆Pm<2^a<3u ,ا(?>9D4?;Mm )7BkG)j0?cϸZA~yۈt,=Ggt2QʭΘw) tTB+ i_ :^)=7e0\jO5wTH{Z& ο552޿$u=wT3qМ@P/m]!6Id,j pNWP}`WH8(bWV]xA%"m3)oze0q]@j d(oL!m@Z_%`4Z^p+OKa08qC~ L/5Gdwrk(pxNh2-?t\ͨT”JuŵknūSWmmGд>w oŀ^b)&TUR4^oζSa{R_,âB%6o?t/[xo-[~xb,qP0MW;Z,3 `3 UlL\I{{|B.ůI1V8N:~/l%R4uI=JĦAݼX8|GIY|rS7|Hxj Dd_3dJr G>(LE+)rLbw 8 |-u*^/ڂ!!{2K8?ПӠ_pHxYHY|T.#&y{v#M!秷/_}7S^oJE&ot{#.~NG/ɃzchR*3.8Ug G8\iuR[дMs\)^~c=DQNp䘂l .pp覲ԈĚ8۠jpnTB{=wz0?@U$f Uգ#'X9l(nӄ5q(]XA8r`MO8o֤0:!IƬ_^xO&.=lu?QzNez|-d0xYB4䝽QsCGYZvN#xC?/qRgXzBLpySLHC)6'*N|ůQH/U]#֮;LT0X)Ewi=9{(<D%8/w~H sQ0>g">˧n|(Pn>㾗D}1-G&ļ 2āM=EL*wrX9lȎgm zq 8d;/o%N6b<_ۍ^N qHX6-b=jǮxH[oX܊44+A7j Kp "#.Kv? aIAoVI!)#|Z26ܭl5 >:4਽G zu6X2V%Tdj{Fb=TZjn6l7l@zT7Nס_&Q{/OiBsίfzU}0;Y6V "J\(E+&2vqi >VHi8ΐÎ1sFXXAoړ ˏwT CE3e[/D ^ N@jq$xOE[MTtE4}u(7Su[Fa_T"tT$t\dnĚ1I^ں;.y1qzz'{ wnFOW/󪾀C[OXD3tçǶh,1يA'e/x&oRG<שO5*B{kdړ~OsǙlrisyI0!JsRp?Z'ܜ??1?l`'Haon%K̜ؓIqM>_]kqV̉ +r65BgnjuQCQ!sq)"[$ pK~bؘ4 KW)4[gw<m  X  %[T9Y^W9'%[Qt(1v78|wq@+# ;蠱8R)?gjHP#9(le?.*Tj0PfiRFT+NΆ"*F\ u|M:4lwyA{`uHo1"'6X)hZ;nLP֮eLw6ʳ]2GOtYҒ2{^} *JQ##1f3 T( iUm&hZ :\h'nއc8bI*9\~6ޙu7Qtj3[&p0= 茁uEIck(-D6e̙ >!31PLlӊT|LUwŐ͖ IVR`@֓K!vXt&lq 5i64&ITK3h./4dc/״U/HxT yO:~8x UjXZH돞+ $D;YC.VLwɃbΛ(VO+gIC5QC[\Z*#9q'֤:؞׶j, IF*)*6Uq}dv]^W{KA@\M[@]rEM1Wjg½꓇6I2*u7 myF-`g(<dܡ 097ڱt9MBĐI\6N`FlRŽ66]49@zGT8TUxU83Gݙ.*/wf/>H%%R!al˰i*roVR</mq\hh2P:4Lp,1:kP;$&h3\D$c4P*MqDVsIHjY7;F5(N7y)w}:/^=B0قRw:ᓞ^\,/I1O# C ޻ȭ*<>`wF^0~O/G&7.c)Biz@hvPiڨT0Quz)gg ZP49.S+ /h řz6/Uױ@h Ź}9n,?J |uu=ǓOi'VKo訿,ٻ'ͽ2ߠyZ=E|^~CFt8<vN` La@{zuAS,PTRgr+"Czۢk&mi& i29D`89* ypR/gxץrRtM?p9c;}Jֺďl^x&2m㣚=`䛮j]xƧ0 ,/V;69T)Jo&! #M 8/#ɱ#g}. kyE)Jbl(T4ܼ⴨fBBfٰm[t]-,nFMMVi}Mq6, Z*{"3Gܜ2HZڄ;p]S:Sa0L5 5)wp%\F(%0P{k/bbK*rIcLiʮ72"n0]XVˮi"p)-xԼ&V}WQU_k=|҅Vaj_TZx#f."8feW`0R(r+L~i+w.s]gqg>5o^E'j]['` [}Xp),X^dMݧqp.Z YGp$xy+WzW^["h L,@r >d\u)ڞى]T{)֞[J>MW55~{RE4>n;ڋ4@:@쪐qs\FKu^?ZFCkÙ`z˃;0  `oᑸH!6Q[Yà'FbOwpN[Ǿa{6  %/FB![x=)N rD%d.U ۋ35>W[܁69g'J{q߱}rS)zwB:MAe%pP6F'HE V;_/Wv?"78ۚtr8!M -N>|aS߃L}gIX}|i7uLE&Wׂu{TMc4Ь:g긷͕ࣤu,)+Sؽ>hM=ě}{,Pܓ.r%R~8D409ԛ0~W|»J(gGLC&~8Hq2Y󇗻O'25+܁&i5)oi;#EM'44 q7](&^OH@ u[yt:.n>7RQ0ifWqx1D{s%oZu^7D7Gt* SI2(:yM$vضS*D7M6eR[[|c}꧓;f8R<-/+.nj0ErU`ZAxD,PO&u f@=z1]`iԡ\̫o>tŜRF" Wʃr>šF\rJZ*t"ʛ0彚D8ޏ'=,llY$*Mk:_0a%H#dNIJ H.=YBi=ޏܘ+Ry_d1-Y243NLA ڒŭNse1ZH0IY_( ȌEc`4&c. -i>*[F@_%q,K J92$ ly-dXD֐= u0_-Ŵy>b~2hڈ8ΰUΫF䡤[ "&O%=T*#ȹ?L^\P$OѠr,q3ojdtJ7j6@i8ay8Z@ԣqg={XU6[sJ,)|aQ]P%SZL* ^=DG@b[:hXf$H: Pǒ[U}MÓ*3I~t(m:i3db*QQĝVjdA[KQ#mx"i^C,|L%m#s%H]DLsɬJK'OgןV圪 Gf&mbfCGЮ)N@RM9Q %)[*/o}2"o0!#TfێÐvR"mAH'OT1B*ODaDu3\wJ.rFԤ*u;“î-CE#n]19H(~+]:̑%dMF E օjJ^?XMcϒ7eAyH#T8I>W#]HAWX$Ҕc \TcfO'ew?ReKj[2r"B=Y|J̩kȶɶϲ#97P_

初一年级数学题奥数的,初一,中等
初一年级数学题
奥数的,初一,中等

初一年级数学题奥数的,初一,中等
初一数学期中测试卷 (上册)
班级:________ 姓名:________ 分数:_______
一、填空 (每空1分,共30分)
⒈正方体是由__6__个面围成的,有____8_个顶点,__12____条棱.圆柱是由___2__个面围成的.
⒉如果零上5℃记作+5℃,那么零下3℃记作_-3℃_____.
⒊若a<0,则a___>__2a (用<、> 、=填空)
⒋在74中底数是__74_____,指数是___0____,在(-2)3中底数是__-6______,指数是___0___.
⒌(-1)2000=_____-2000_____,(-1)2001=_____-2001______,-12002=___(-1)2002__________.
⒍a的15%减去70可以表示为__15%a-70____________.
⒎如果立方体的边长是a,那么正方体的体积是______a__,表面积是6a_______.
⒏一个两位数的个位数是a,十位数字是b,请用代数式表示这个两位数是__________________.
⒐三角形的三边长分别是2x,4x,5x,这个三角形的周长是___________.
⒑三个连续偶数中,n是最小的一个,这三个数的和为_________.
⒒请说明下列各代数式的意义:
6P:________________________________
a2-b2:_______________________________.
25a+12b:_________________________________.
⒓某商品的价格是x元,则1/2x可以解释为______________________.
12、(1) 0.25°=_____′_____〃 (2) 1800〃=_____′_____°
⒔周角=_______平角=________直角=_______度
二、判断题 (每题1分,共6分)
1,有理数分为正数和负数.( )
2、有理数的绝对值一定比0大.( )
3、-(3x-2)=-3x-2 ( )
4、8x+4=12x ( )
5、3(x+8)=3x+24 ( )
6、3x+3y=6xy ( )
选择 (每小题2分,共12分)
1、如果|a|=4,则a=( )
A、4 B、-4 C、4或-4 D、都不是
2、-3/8的倒数是( )
A、-3/8 B、8/3 C、-8/3 D、3/8
3、将数n减少3,再扩大5倍,最后的结果是( )
A、n-3×5 B、5(n-3) C、n-3+5n D、5n-3
4、某班共有学生a人,其中男生人数占35%,那么女生人数是( )
A、35%x B、(1-35%)x C、x/35% D、x/1-35%
5、指出图中几何体截面的形状符号( )
A.B.C.D.
三、计算 (每小题3分,共12分)
1、(1/3+1/4-1/6)×24
2、0-23÷(-4)3-1/8
3、(-2)3×0.5-(-1.6)2/(-2)2
4、23÷[(-2) 3 -(-4)]

我也是初一的
我觉得不是太难
希望你喜欢
初一数学期中测试卷 (上册)
班级:________ 姓名:________ 分数:_______
一、填空 (每空1分,共30分)
⒈正方体是由__6__个面围成的,有____8_个顶点,__12____条棱。圆柱是由___2__个面围成的。
⒉如果零上5℃记作+5℃,那么零下3℃记作_-3...

全部展开

我也是初一的
我觉得不是太难
希望你喜欢
初一数学期中测试卷 (上册)
班级:________ 姓名:________ 分数:_______
一、填空 (每空1分,共30分)
⒈正方体是由__6__个面围成的,有____8_个顶点,__12____条棱。圆柱是由___2__个面围成的。
⒉如果零上5℃记作+5℃,那么零下3℃记作_-3℃_____。
⒊若a<0,则a___>__2a (用<、> 、=填空)
⒋在74中底数是__74_____,指数是___0____,在(-2)3中底数是__-6______,指数是___0___。
⒌(-1)2000=_____-2000_____, (-1)2001=_____-2001______,-12002=___(-1)2002__________。
⒍a的15%减去70可以表示为__15%a-70____________。
⒎如果立方体的边长是a,那么正方体的体积是______a__,表面积是6a_______。
⒏一个两位数的个位数是a,十位数字是b,请用代数式表示这个两位数是__________________。
⒐三角形的三边长分别是2x,4x,5x,这个三角形的周长是___________。
⒑三个连续偶数中,n是最小的一个,这三个数的和为_________。
⒒请说明下列各代数式的意义:
6P:________________________________
a2-b2:_______________________________。
25a+12b:_________________________________。
⒓某商品的价格是x元,则1/2x可以解释为______________________。
12、(1) 0.25°=_____′_____〃 (2) 1800〃=_____′_____°
⒔周角=_______平角=________直角=_______度
二、判断题 (每题1分,共6分)
1,有理数分为正数和负数。 ( )
2、有理数的绝对值一定比0大。 ( )
3、-(3x-2)=-3x-2 ( )
4、8x+4=12x ( )
5、3(x+8)=3x+24 ( )
6、3x+3y=6xy ( )
选择 (每小题2分,共12分)
1、如果|a|=4,则a=( )
A、4 B、-4 C、4或-4 D、都不是
2、-3/8的倒数是( )
A、-3/8 B、8/3 C、-8/3 D、3/8
3、将数n减少3,再扩大5倍,最后的结果是( )
A、n-3×5 B、5(n-3) C、n-3+5n D、5n-3
4、某班共有学生a人,其中男生人数占35%,那么女生人数是( )
A、35%x B、(1-35%)x C、x/35% D、x/1-35%
5、指出图中几何体截面的形状符号( )
A. B. C. D.
三、计算 (每小题3分,共12分)
1、(1/3+1/4-1/6)×24
2、0-23÷(-4)3-1/8
3、(-2)3×0.5-(-1.6)2/(-2)2
4、23÷[(-2) 3 -(-4)]
四、化简下列各式 (每小题3分,共12分)
1、2(2a2+9b)+3(-5a2-4b)
2、a+(5a-3b)-(a-2b)
3、3n-[5n+(3n-1)]
4、a-(5a-3b)+(2b-a)
五、先化简,再求值 (每小题5分,共10分)
1、(3a2 +7bc-4b2)-(5a2-3bc-2b2)+abc,其中a=5,b=1/3,c=3
2、(5a2-3b2)+[(a2+b2)-(5a2+3b2)],其中a=-1,b=1

收起

1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与...

全部展开

1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?
轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?
甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?
甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?
1,设可以做x张方桌,则
需要做x张桌面,4x条桌腿
x*(1/50)+4x*(1/300)=5
解得 x=150
2,解:设甲乙两地的距离是x千米,
根据题意得: x/(24+2)+x/(24-2)=6
解得 x=71.5
则 ...........
3题
解设x天后已仓的媒是甲仓的2倍
则 2*(200-15x)=70+25x
解得 x=6
4题
解设向甲车间安排x人,则向乙车间安排20-x人
根据题意得 27+x=2*(19+20-x)
解得 x=17
1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元
如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........
答案是4955
由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1 2 3
--- + --- + --- = 0 ①
x y z
1 6 5
--- - --- - --- =0 ②
x y z
x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人
负二分之一 三分之一
负四分之一 五分之一 负六分之一
负七分之一 八分之一 负九分之一 十分之一。。。。。。
这组数中,第2007行第7个是什么数?
第1行有1个数,
第2行有2个数,
第3行有3个数,
....
所以第n行有n个数,
1到2006行,一起有数:
1+2+3+...+2006=2006*2007/2=2013021 个.
2013021+7=2013028
第2007行第7个的分数是1/2013028.
又发现,在每行第奇数个位置的都是负数.
所以第2007行第7个是: -1/2013028
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
已知一列数:1,6,11,16.......
求:
第17位是多少?
前20个的和?
(请用所给的式子做答)
第2题:
有一列数:2.4.6.8........192
求:
他们的和?
请判断48是数列中的第几个?(可以列方程)
3、有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是多少?
4、设M、N都是自然数,记PM是自然数M的各位数字之和,PN是自然数N的各位数字之和。又记M*N是M除以N的余数。已知M+N=4084,那么(PM+PN)*9的值是多少?
5、如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成左右两部份,左边部份面积是38,右边部份面积是65,那么三角形ADG的面积是?
6、某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?
7、已知甲酒精纯酒精含量为72%,乙酒精纯酒精含量为58%,两种酒精混合后纯酒精含量为62%。如果每种酒精取的数量都比原来多15升,混合后纯酒精含量为63.25%,那么第一次混合时,甲酒精取了多少升?
8、在下面算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。那么“新年好”所代表的三位数是多少?
9、有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。那么,原来第一家商场的利润是第二家商场利润的多少倍?
10、从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?
11、有A、B、C、D、E五支球队参加足球循环赛,每两个队之间都要赛一场。当比赛快要结束时,统计到的成绩如下:
队名 获胜场数 平局场数 失败场数 进球个数 失球个数
A 2 1 0 4 1
B 1 2 0 4 2
C 1 1 1 2 3
D 1 0 3 5 5
E 0 2 1 1 5
已知A与E以及B与C都赛成平局,并且比分都是1:1,那么B与D两队之间的比分是多少?
12、一辆客车和一辆面包车分别从甲、乙两地同时出发相向而行。客车每小时行驶32千米,面包车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地点,返回时的速度,客车第小时增加8千米,面包车每小时减少5千米。已知两次相遇处相距70千米,那么面包车比客车早返回出发地多少小时?
甲(简称1)乙(简称2)二人走在某商场扶手电梯.1从1楼到2楼,2从2楼到1楼.1站在电梯上,每秒走上去两级,(注意:电梯也在动).50秒走到2楼. 2站在电梯上,每秒下去3级,60秒到达底部.已知道电梯运行的方向一直是从下往上.并且1和2双方同时到达目的地.求:静止时,电梯的级数.
从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。如果六个三位数的和是3330,那么这六个三位数中最大的是多少 ?
题在前,答案在后
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.已知方程组
有解,求k的值.
6.解方程2|x+1|+|x-3|=6.
7.解方程组
8.解不等式||x+3|-|x-1||>2.
9.比较下面两个数的大小:
10.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
初一奥数复习题解答
作者:佚名 文章来源:初中数学竞赛辅导 点击数:456 更新时间:2006-2-4
2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以
原式=-b+(a+b)-(c-b)-(a-c)=b.
3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,
|x+m|+|x-n|=x+m-x+n=m+n.
4.分别令x=1,x=-1,代入已知等式中,得
a0+a2+a4+a6=-8128.
5.②+③整理得
x=-6y, ④
④代入①得 (k-5)y=0.
当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.
故k=5或k=-1时原方程组有解.
<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有
,所以应舍去.
7.由|x-y|=2得
x-y=2,或x-y=-2,
所以
由前一个方程组得
|2+y|+|y|=4.
当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3
同理,可由后一个方程组解得
所以解为
解①得x≤-3;解②得
-3<x<-2或0<x≤1;
解③得x>1.
所以原不等式解为x<-2或x>0.9.令a=99991111,则
于是
显然有a>1,所以A-B>0,即A>B.
10.由已知可解出y和z
因为y,z为非负实数,所以有
u=3x-2y+4z
11.
所以商式为x2-3x+3,余式为2x-4.
12.小柱的路线是由三条线段组成的折线(如图1-97所示).
我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短).
显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.
13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又
∠AOD+∠DOB=∠AOB=180°,
所以 ∠COE=90°.
因为 ∠COD=55°,
所以∠DOE=90°-55°=35°.
因此,∠DOE的补角为
180°-35°=145°.
14.如图1-99所示.因为BE平分∠ABC,所以
∠CBF=∠ABF,
又因为 ∠CBF=∠CFB,
所以 ∠ABF=∠CFB.
从而
AB‖CD(内错角相等,两直线平行).
由∠CBF=55°及BE平分∠ABC,所以
∠ABC=2×55°=110°. ①
由上证知AB‖CD,所以
∠EDF=∠A=70°, ②
由①,②知
BC‖AE(同侧内角互补,两直线平行).
15.如图1-100所示.EF⊥AB,CD⊥AB,所以
∠EFB=∠CDB=90°,
所以EF‖CD(同位角相等,两直线平行).所以
∠BEF=∠BCD(两直线平行,同位角相等).①又由已知 ∠CDG=∠BEF. ②
由①,② ∠BCD=∠CDG.
所以
BC‖DG(内错角相等,两直线平行).
所以
∠AGD=∠ACB(两直线平行,同位角相等).
16.在△BCD中,
∠DBC+∠C=90°(因为∠BDC=90°),①
又在△ABC中,∠B=∠C,所以
∠A+∠B+∠C=∠A+2∠C=180°,
所以
由①,②
17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以

S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,
所以 S△EFGD=3S△BFD.
设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以
S△CEG=S△BCEE,
从而
所以
SEFDC=3x+2x=5x,
所以
S△BFD∶SEFDC=1∶5.
18.如图1-102所示.
由已知AC‖KL,所以S△ACK=S△ACL,所以
即 KF=FL.
+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!
20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.
21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).
22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有
(α+1)(β+1)(γ+1)=75.
于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时
(α+1)(β+1)=25.
所以
故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52
23.设凳子有x只,椅子有y只,由题意得
3x+4y+2(x+y)=43,
即 5x+6y=43.
所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.
24.原方程可化为
7x-8y+2z=5.
令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是
而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是
把t的表达式代到x,y的表达式中,得到原方程的全部整数解是
25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有
8×7×6×5×4×3×2×1=40320
种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.
(2)逐个考虑结对问题.
与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有
2×8×7×6×5×4×3×2×1=80640
种不同情况.
26.万位是5的有
4×3×2×1=24(个).
万位是4的有
4×3×2×1=24(个).
万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:
34215,34251,34512,34521.
所以,总共有
24+24+6+4=58
个数大于34152.
27.两车错过所走过的距离为两车长之总和,即
92+84=176(米).
设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有
解之得
解之得x=9(天),x+3=12(天).
解之得x=16(海里/小时).
经检验,x=16海里/小时为所求之原速.
30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得
解之得
故甲车间超额完成税利
乙车间超额完成税利
所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).
31.设甲乙两种商品的原单价分别为x元和y元,依题意可得
由②有
0.9x+1.2y=148.5, ③
由①得x=150-y,代入③有
0. 9(150-y)+1.2y=148. 5,
解之得y=45(元),因而,x=105(元).
32.设去年每把牙刷x元,依题意得
2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,

2×1.68+2×1.3+2×1.3x=5x+2.6,
即 2.4x=2×1.68,
所以 x=1.4(元).
若y为去年每支牙膏价格,则y=1.4+1=2.4(元).
33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则
y=(4-x)(400+200x)
=200(4-x)(2+x)
=200(8+2x-x2)
=-200(x2-2x+1)+200+1600
=-200(x-1)2+1800.
所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.
34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以
0.4(25+x)=0.6x,
解之得x=50分钟.于是
左边=0.4(25+50)=30(千米),
右边= 0.6×50=30(千米),
即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.
35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有
(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.
(3)新合金中,含锰重量为:
x·40%+y·10%+z·50%=400-0.3x,
而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.
很长的,很难得

收起