设椭圆的x^2/3+y^2=1 左右焦点分别为F1,F2,在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出P点的坐标,如果不存在说明理由
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 21:18:11
xQN@.54Ww]$`i @_ܙh7sϝsϙh^sf>Tc
v#0@~̣1 ,DjϾB+Ё~jSTۧ3DXj"E >aZ5@c'/+4^OЎba@@WM:
7[=HC~v' :!N~{zaB|HH4j>c3TC&f0];"]k^g ޢ+5b]VfJ6AHnX]g}2^17PKUۅxt
oy=40ہo%+/
设椭圆的x^2/3+y^2=1 左右焦点分别为F1,F2,在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出P点的坐标,如果不存在说明理由
设椭圆的x^2/3+y^2=1 左右焦点分别为F1,F2,在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出P点的坐标,如果不存在说明理由
设椭圆的x^2/3+y^2=1 左右焦点分别为F1,F2,在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出P点的坐标,如果不存在说明理由
设 p(x,y)
根据 焦半径公式
pf1=根号3+根号2x
pf2=根号3-根号2x
PF1⊥PF2
三角形pf1f2是直角三角形
根据勾股定理
解出x=根号6/2
y=根号2/2
所以 存在
两个条件:其一 PF1和PF2之和为实长轴
其二 PF1⊥PF2,利用勾股定理,平方和F1F2的平方,
然后发现无解
数学题:椭圆 抛物线已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程x=9/根号5,且该椭圆上的点到右焦点的最近距离为3-根号5(1)求椭圆方程(2)设F1,F2是椭圆左右两焦点,A是椭圆与y轴负半轴的
设F1、F2分别是椭圆x²/4+y²=1的左右焦点
明天交!设F1,F2为椭圆x^2/4+y^2/3=1的左右焦点,过椭圆中心任作一条直线设F1,F2为椭圆x^2/4+y^2/3=1的左右焦点,过椭圆中心任作一条直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,向量PF1*向量PF2
设F1.F2分别为椭圆x^2/3+y^2=1的左右的焦点,点A,B在椭圆上,若向量F1A=5F2B,则A点的坐标高考题,浙江的
设M是椭圆x^2/64 y^2/48=1上的一点,f1、f2分别是椭圆的左右焦点.若MF1=3MF2,则点M的坐标是().
设F1.F2分别为椭圆x^2/3+y^2=1的左右的焦点,点A,B在椭圆上,若向量F1A=5F2B,则A点的坐标2011高考题,浙江.
P是椭圆x^2/4+y^2/3=1上的点,F1,F2是椭圆的左右焦点,设/PF1/*/PF2/=k,则k的最大值和最小值之差为多少?
设F1F2分别是椭圆x^2/4+y^2=1的左右焦点,过左焦点F1作直线l与椭圆交于不同的两点A,B,OA垂直于OB时,求AB
设F1,F2分别为椭圆X^2/3+Y^2=1的左右焦点,点A.B在椭圆上,若向量F1A=5向量F2B,求A的坐标
设椭圆的x^2/3+y^2=1 左右焦点分别为F1,F2,在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出P点的坐标,如果不存在说明理由
设F1F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点求第二问
设椭圆C通过P(根号6,-3)且与椭圆x^2/4+y^2/10=1有相同的焦点,求椭圆C的方程
设椭圆x平方/3+y平方/2=1的左右焦点分别是F1,F2,直线L1过点F1且垂直于椭圆的长轴,动直线...设椭圆x平方/3+y平方/2=1的左右焦点分别是F1,F2,直线L1过点F1且垂直于椭圆的长轴,动直线L2垂直L1于点P,线
设F1F2分别为椭圆C:x^/a^+y^/b^=1(a>b>0)的左右两焦点(1)求椭圆C的焦距(2)如果向量AF2=2向量F2B,求椭圆C的方程
设椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的左右焦点分别为F1、F2,设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,A是椭圆上的一点且在X轴上方,AF2⊥F1F2,远点O到直线AF1的距离为1/3|OF1|.(2)若左焦点F1
(1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角...(1/2)设f1,f2分别是椭圆x^2/4+y^2=1的左右焦点 设过定点m(0,2)的直线l与椭圆交于不同的两点a,b,且角a
高中数学 椭圆方程 求救!1.设椭圆方程C: X平方/a平方+y平方/b平方=1 过点(0.4) 离心率为3/5 问题:求椭圆c的方程?2已知点P1 P2 分别是椭圆x平方/r+2 + y平方/r+1 =1 (r>-1)的左右焦点,弦AB过点F
设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点与抛物线C2:x^2=4√2y焦点重合,F1,F2分别是椭圆的左右焦点,离心率e=√3/3,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,是否存在直线l,使得OM·ON=-1,若存在,