已知:A=x^2-3xy+y^2,B=x^2-5xy+2y^2,求3A-[(-4A+2B)-(2A-B)]的值,其中xy满足(x+y)^2+|x+3|=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:36:31
已知:A=x^2-3xy+y^2,B=x^2-5xy+2y^2,求3A-[(-4A+2B)-(2A-B)]的值,其中xy满足(x+y)^2+|x+3|=0
xJ0FLmM!}  AHa"t, " "gFa]Md1LV7{(r4ޖBI2/iԦQ$EtC` [^铹Nsq@~GrCѕјΣL5$K }O Z8c;햷ubv{Vz-M:0_3>4\{Q__(A~^Nt*`9 ,ªd&مXl0N

已知:A=x^2-3xy+y^2,B=x^2-5xy+2y^2,求3A-[(-4A+2B)-(2A-B)]的值,其中xy满足(x+y)^2+|x+3|=0
已知:A=x^2-3xy+y^2,B=x^2-5xy+2y^2,求3A-[(-4A+2B)-(2A-B)]的值,其中xy满足(x+y)^2+|x+3|=0

已知:A=x^2-3xy+y^2,B=x^2-5xy+2y^2,求3A-[(-4A+2B)-(2A-B)]的值,其中xy满足(x+y)^2+|x+3|=0
原式=3A-[(-4A+2B)-(2A-B)]=3A-[-4A+2B-2A+B]=3A-[-6A+3B]=3A+6A-3B=9A-3B.∵A=x²-3xy+y²,B=x²-5xy+2y².∴代入原式可得,原式=9(x²-3xy+y²)-3(x²-5xy+2y²)=6x²-12xy+3y².∵(x+y)²+|x+3|=0.∴必有x=-3,y=3.代入原式=6×(-3)²-12×(-3)×3+3×3²=3=9(6+12+3)=9×21=189.∴原式=189.