平面向量基本定理的题平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为我自己想,为什么a+b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:40:38
xRn@~@H6gP#6BLFFDD?ޥYб
R[\Uof+Ef
3}|~h7~}}f
o"L"
И3w2^l C/~[+JG$ ^T\TJF;tCҮe+~YʔƵvyt6,1OGX~}ȿAB0N曅x)V1DbReaɖe+,/,(tZD!*skS诘dQX~x*"Ҵ wmL0dVy-&qkdXCЩ>DPrĤi|-G:͢Ȫmo
,t-چOYDQ93H¤&bPCISrF#㠐
M
A>P_$i Ѥ O
k]ˉוb?)
平面向量基本定理的题平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为我自己想,为什么a+b
平面向量基本定理的题
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为
我自己想,为什么a+b不等于1?不是有这个定理吗
平面向量基本定理的题平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为我自己想,为什么a+b
从你提供的条件来看,显然,A,B,C不在一直线上,
只有当点C在直线AB上时,才有a+b=1,反之当a+b=1时,点A,C,B共线.这是用来判定三点共线的一个好方法.
证明:点C在直线AB上时,向量AC=t向量AB,(t为某实数)(后面我省去向量两字了)OC-OA=t(OB-OA)=tOB-tOA
所以OC=(1-t)OA+t OB,这儿a=1-t,b=t,故 a+b=1-t+t=0,反之,你自己可以证了.
平面向量基本定理的题平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为我自己想,为什么a+b
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与...平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中
平面向量的基本定理概念
平面向量基本定理是什么
平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB 的夹角为120度,向量OA与与向量OC的夹角为30度,平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的 夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,
向量 如图,平面内有三个向量OA,OB,OC,如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为150,OA与OC的夹角为30,OA模长=3,OB=OC模长为2√3,若OC向量=xOA向量+yOB向量,则X+Y=?
若平面内三个向量 OA OB OC 其中=120°平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 因为
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为
平面向量基本定理及其坐标表示
高一数学平面向量基本定理
平面向量的基本定理及其意义是什么?都不对
如图,平面内有三个向量OA,OB,OC,其中
平面向量基底的问题平面向量基本定理到底是什么意思啊,向量的基底又是什么意思啊,和那个数乘有什么区别啊 ?如果e1、e2是平面内两个不共线的向量,那么对于平面内的任一向量a,有且只有
如图,有三个平面向量OA向量,OB向量,OC向量,其中OA向量与OB向量的夹角为120°,如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为150°,OA模长=OB模长=1,OC模长为2√3,若OC向量=xOA向
平面内有三个向量OA,OB ,OC 其中向量OA与向量OB的夹角为120度,向量OA与向量OC的夹角为30度,且|OA|=|OB|=1,若向量OC=2√3 若向量OC=a向量OA+b向量OB 则a+b的值为 因为向量OA与向量OB的夹角为120度,所以向
平面向量基本定理在向量中的作用
【平面向量的基本定义】】